Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T19:30:03.395Z Has data issue: false hasContentIssue false

Strongly adhering and thick highly tetrahedral amorphous carbon (ta–C) thin films via surface modification by implantation

Published online by Cambridge University Press:  31 January 2011

M. Chhowalla
Affiliation:
Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
G. A. J. Amaratunga
Affiliation:
Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
Get access

Abstract

Highly tetrahedral amorphous carbon thin films have exceptional mechanical properties that make them ideal for many challenging wear applications such as protective overcoats for orthopaedic prostheses and aerospace components. However, the use of ta–C in many wear applications is limited due to the poor adhesion and the inability to grow thick films because of the large compressive stress. Here we report on a simple modification of the substrate growth surface by 1-keV ion bombardment using a cathodic vacuum arc (CVA) plasma prior to deposition of ta–C films at 100 eV. The 1-keV C+ ion bombardment created a thin intermixed layer consisting of substrate and carbon atoms. The generation of the intermixed carbide layer improved the adhesion and allowed the growth of thick (several μm) ta–C layers on metallic substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fallon, P.J., Veeresamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J., Milne, W.I., and Koskinen, J., Phys. Rev. B 48, 4777 (1993).CrossRefGoogle Scholar
2.Lifshitz, Y., Lempert, G.D., Rotter, S., Avigal, I., Uzan-Saguy, C., Kalish, R., Kulik, J., Marton, D., and Rabalais, J.W., Diamond Relat. Mater. 3, 542 (1994).CrossRefGoogle Scholar
3.McKenzie, D.R., Muller, D., and Pailthorpe, B.A., Phys. Rev. Lett. 67, 773 (1991).CrossRefGoogle Scholar
4.Chhowalla, M., Robertson, J., Chen, C.W., Silva, S.R.P., Davis, C.A., Amaratunga, G.A.J., and Milne, W.I., J. Appl. Phys. 81, 139 (1997).CrossRefGoogle Scholar
5.Coll, B.F. and Chhowalla, M., Surf. Coat. Technol. 97, 385 (1997).Google Scholar
6.Chhowalla, M., Yin, Y., Amaratunga, G.A.J., McKenzie, D.R., and Frauenheim, T., Appl. Phys. Lett. 69, 2344 (1996).CrossRefGoogle Scholar
7.Ziegele, H., Schreibe, H.J., and Schultrich, N.B., Surf. Coat. Technol. 97, 385 (1997).CrossRefGoogle Scholar
8.Hirvonen, J.P., Koskinen, J., Koponen, I., Likonen, J., and Kattelus, H., Nucl. Instrum. Phys. B 80, 1472 (1997).Google Scholar
9.Friedmann, T.A., Sullivan, J.P., Knapp, J.A., Tallant, D.R., Follstaedt, D.M., Medlin, D.L., and Mirkarimi, P.B., Appl. Phys. Lett. 71, 3820 (1997).CrossRefGoogle Scholar
10.Argon, A.S., Gupta, V., Landis, H.S., and Cornie, J.A., Mater. Sci. Eng. A 6, 275 (1991).Google Scholar
11.Schreulkamp, R.J., Custer, J.S., Liefting, J.R., Lu, W.X., and Saris, F.W., Mater. Sci. Rep. 6, 275 (1991).CrossRefGoogle Scholar
12.Davis, C.A., Amaratunga, G.A.J., and Knowles, K.M., Phys. Rev. Lett. 80, 3280 (1998).CrossRefGoogle Scholar
13.Gerstner, E.G., McKenzie, D.R., Puchert, M.K., Timbrell, P.Y., and Zhou, J., J. Vac. Sci. Technol. A 12, 406 (1995).CrossRefGoogle Scholar