Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T08:12:10.825Z Has data issue: false hasContentIssue false

Sintering of screen-printed platinum thick films for electrode applications

Published online by Cambridge University Press:  31 January 2011

J. B. Véchembre
Affiliation:
Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
G. R. Fox
Affiliation:
Laboratoire de Céramique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
Get access

Abstract

Pt electrodes with a 6–8-μm thickness were produced on alumina substrates by a double-print Pt screen-printing process that included a sequential heat treatment at 600 °C and 1300 °C. This process improved the final sintered double-print film because the first printed layer acted as a sintering template for the second printed layer. The sintered Pt films have a 95% coverage of the alumina surface, 92% density, 0.73-μm average surface roughness, and 16.10−5 Ω cm resistivity. The sintering behavior of Pt films exhibited three stages of densification: Stage I (T °C < 700 °C), exhibiting neck growth, and Stage II (700 < T °C < 1300 °C), exhibiting grain growth, have activation energies of 64 kJ/mol and 125 kJ/mol, respectively. Stage III exhibits a decrease in shrinkage due to Pt coalescence and island formation. The transition temperature, 700 °C, between Stages I and II corresponds to an anomalous increase in surface roughness and resistivity. The thickness of Pt films was a critical parameter for achieving alumina surface coverage. Uniaxial pressing of dried Pt films increased densification and reduced the surface roughness of double-print Pt films.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fu, Shen-Li, Chung, J.K., and Cheng, S.Y., Jap. J. Appl. Phys. 24 (24–2), 416 (1985).CrossRefGoogle Scholar
2.Baudry, H., Hyb. Circ. 14, 71 (1987).Google Scholar
3.Chen, H.D., Udayakumar, K.R., Cross, L.E., et al., J. Appl. Phys. 77 (7), 3349 (1995).CrossRefGoogle Scholar
4.Collier, J., Cornejo, I.A., and Haun, M.J., Ferroelectrics 154, 47 (1994).CrossRefGoogle Scholar
5.Chen, H.D., Udayakumar, K.R., Cross, L.E., et al., IEEE, 495 (1994).Google Scholar
6.Moilanen, H., Leppävuori, S., and Uusimäki, A., Sen. Act. A 37–38, 106 (1993).CrossRefGoogle Scholar
7.Uchino, K., Ceram. Bull. 65, 647 (1986).Google Scholar
8.Hackenberger, W.S., Shrout, T.R., and Pickrell, D.P., ISHM, 12, 53 (1996).Google Scholar
9.Smith, S.W. and Light, E.D., IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 40, 727 (1993).CrossRefGoogle Scholar
10.Morten, B., De Cicco, G., and Prudenziati, M., Sen. Act. A 41–42, 33 (1994).CrossRefGoogle Scholar
11.White, N. and Cranny, A., Hyb. Circ. 12, 32 (1987).Google Scholar
12.Harsanyi, G. and Hahn, E., Mechat. 3, 167 (1993).CrossRefGoogle Scholar
13.Morten, B., De Cicco, G., Gandolfi, A., et al., Hyb. Circ. 28, 25 (1992).Google Scholar
14.Prudenziati, M., Morten, B., and De Cicco, G., Microel. Int. 38, 5 (1995).CrossRefGoogle Scholar
15.Leppävuori, S., Lozinski, A.H., and Uusimaki, A., Sen. Act. A 46–47, 391 (1995).CrossRefGoogle Scholar
16.Monneraye, M., Act. Elec. 21, 263 (1978).Google Scholar
17.Austin, B.M., Sol. Sta. Technol. 12, 53 (1969).Google Scholar
18.Hoffman, L.C., Ceram. Bull. 63, 572 (1984).Google Scholar
19.Larry, J.R., Rosenberg, R.M., and Uhler, R.O., IEEE Transactions on Components, Hybrids and Manufacturing Technology 3, 211 (1980).CrossRefGoogle Scholar
20.Baudry, H. and Franconville, F., “Encres Sérigraphiables pour Haute Définition: Rhéologie et Impression,” Act. Elec. 21, 283 (1978).Google Scholar
21.Vest, R.W., Ceram. Bull. 65, 631 (1986).Google Scholar
22.Gardeniers, J.G.E., Smith, A., and Cobianu, C., J. Microm. Microe. 5, 153 (1995).CrossRefGoogle Scholar
23.Madsen, L.D. and Weaver, L., J. Elec. Mater. 21, 93 (1992).CrossRefGoogle Scholar
24.Bersani, Massimo, Morten, Bruno, and Prudenziati, Maria, J. Mater. Res. 12, 501 (1997).CrossRefGoogle Scholar
25.Zhang, H-X., Leppävuori, S., Uusimäki, A., et al., Ferroelectrics, 154, 277 (1994).CrossRefGoogle Scholar
26.Savage, J., in Handbook of Thick Films Technology, edited by Holmes, P.J. and Loasby, R.G. (Electrochemical Publications Limited, Glasgow, 1976), p. 97.Google Scholar
27.Yamaguchi, T., Takeota, S., Iizuka, T., et al., Scr. Metal. Mater. 31, 1013 (1994).CrossRefGoogle Scholar
28.De Cicco, G., Morten, B., and Prudenziati, M., Piezoelectric Thick-Film Sensors (Elsevier Science, New York, 1994).Google Scholar
29.McLean, M. and Hondros, E.D., J. Mater. Sci. 6, 19 (1971).CrossRefGoogle Scholar
30.Miller, K.T., Lange, F.F., and Marshall, D.B., J. Mater. Res. 5, 151 (1990).CrossRefGoogle Scholar
31.Holmes, P.J. and Loasby, R.G., Handbook of Thick Film Technology (Electromechanical Publication, Ayr, Scotland, 1976).Google Scholar
32.Lenel, F.V., Powder Metallurgy: Principles and Applications (Metal Powder Industries Federation, Princeton, New Jersey, 1980).Google Scholar
33.Cahn, R.W., Materials Science and Technology: Processing of Metals and Alloys (Weinheim VCH, New York, 1991).Google Scholar
34.Hoffman, R.E. and Turnbull, D., J. Appl. Phys. 22, 634 (1951).CrossRefGoogle Scholar
35.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics (Wiley Interscience, London, 1975).Google Scholar
36.Porter, D.A. and Easterling, K.E., Phase Transformations in Metals and Alloys (Chapman & Hall, Boca Raton, 1981).Google Scholar
37.Kuczynski, G.C., Transactions of the AIME 85, 169 (1949).Google Scholar
38.Lücke, K. and Detert, K., Act. Metal. 5, 628 (1957).CrossRefGoogle Scholar
39.Lide, D.R., CRC Handbook of Chemistry and Physics, 75th ed. (CRC Press, 19941995).Google Scholar