Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T14:49:59.471Z Has data issue: false hasContentIssue false

Secondary Phase Formation and Microstructural Development in the Interaction Between SrBi2Ta2O9 Films and Pt/Ti/SiO2/Si Substrates

Published online by Cambridge University Press:  31 January 2011

Chung-Hsin Lu*
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Buh-Kuan Fang
Affiliation:
Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

The phase formation and microstructural development of SrBi2Ta2O9 thin films prepared via spin-coating using metalorganic solution on Pt/Ti/SiO2/Si substrates have been investigated in this study. The spun-on films started to crystallize from above 550 °C and were well crystallized at 800 °C. At higher than 850 °C a secondary phase having a pyrochlore structure was formed in the films. The analysis of EDS and SIMS confirmed that the interaction between the films and the titanium species which diffused outward from the titanium layer on substrates was the origin for the occurrence of the pyrochlore phase. In addition, varying the thickness of the coated films and platinum layers had remarkable influence on the formation amount of the pyrochlore phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
2.Scott, J. F., Phys. World, 46 (1995).Google Scholar
3.Yoo, I. K. and Desu, S. B., Mater. Sci. Eng. B13, 319 (1992).CrossRefGoogle Scholar
4.Desu, S. B. and Yoo, I. K., J. Electrochem. Soc. 140, L133 (1993).CrossRefGoogle Scholar
5.Chen, J., Harmer, M. P., and Smyth, D. M., J. Appl. Phys. 76, 5394 (1994).CrossRefGoogle Scholar
6.Paz de Araujo, C. A., Cuchiaro, J. D., Scott, M. C., and McMillan, L. D., Int. Patent Appl. WO93/12542 (1993).Google Scholar
7.Scott, J. F., Ross, F. M., Paz de Araujo, C. A., Scott, M. C., and Huffman, M., Mater. Res. Soc. Bull. 21, 33 (1996).CrossRefGoogle Scholar
8.Mihara, T., Yoshimori, H., Watanabe, H., and Paz de Araujo, C. A., Jpn. J. Appl. Phys. 34, 5233 (1995).CrossRefGoogle Scholar
9.Aurivillius, B., Arkiv kemi, 1, 54, 463 (1949).Google Scholar
10.Aurivillius, B., Arkiv kemi, 2, 37, 519 (1950).Google Scholar
11.Chu, P. Y., Jones, R. E., Jr., Zurcher, P., Taylor, D. J., Jiang, B., Gillespie, S. J., Lii, Y. T., Kottke, M., Fejes, P., and Chen, W., J. Mater. Res. 11, 1065 (1996).CrossRefGoogle Scholar
12.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).CrossRefGoogle Scholar
13.Azama, M., International Conference on Solid State Devices and Materials, Yokohama, Japan, 803 (1996).Google Scholar
14.Desu, S. B. and Vijay, D. P., Mater. Sci. Eng. B32, 7581 (1995).CrossRefGoogle Scholar
15.Dat, R. D., Lee, J. K., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 67, 572 (1995).CrossRefGoogle Scholar
16.Lee, J. K., Jung, H. J., Auciello, O., and Kingon, A. I., J. Vac. Sci. Technol. 14, 900 (1996).CrossRefGoogle Scholar
17.Li, T., Zhu, Y., Desu, S. B., Peng, C. H., and Nagata, M., Appl. Phys. Lett. 68, 616 (1996).CrossRefGoogle Scholar
18.Abe, K., Tomita, H., Toyoda, H., Imai, M., and Yokote, Y., Jpn. J. Appl. Phys. 30, 2152 (1991).CrossRefGoogle Scholar
19.Sreenivas, K., Reaney, I., Maeder, T., Setter, N., Jagadish, C., and Elliman, R. G., J. Appl. Phys. 75, 232 (1994).CrossRefGoogle Scholar
20.Kwok, A. C. K. and Desu, S. B., Appl. Phys. Lett. 60, 1430 (1992).CrossRefGoogle Scholar
21.Sayer, B. M., Proc. Sixth IEEE Int. Symp. on Application of Ferroelectrics, edited by Smith, W. (Lehigh University, Bethlehem, PA, 1986), p. 560.CrossRefGoogle Scholar