Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T00:36:47.187Z Has data issue: false hasContentIssue false

Response analysis on AlGaN metal–semiconductor–metal photodetectors in a perspective of experiment and theory and the persistent photoconductivity effect

Published online by Cambridge University Press:  24 August 2018

Yiming Zhao*
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
William R. Donaldson
Affiliation:
Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Aluminum gallium nitride (AlGaN) metal–semiconductor–metal photodetectors were successfully fabricated with different contact materials and structures and were tested with ultrafast lasers. The experimental results were compared with the finite element simulations based on APSYS and showed consistent trend with respect to the device IV properties and response behaviors. Persistent photoconductivity (PPC) was observed for devices with both gold and aluminum contacts and various structures, and the decay time can be longer than 10 ms. The response time and responsivity were found to be affected by the bias voltage, operating temperature, and incident power. The mechanism behind the long decay time is analyzed from the perspective of the materials properties and factors influencing the decay time are examined. The nature of the metal–semiconductor contact is studied to help understand the PPC effect, and the contact showed ohmic-like behavior.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carrano, J.C., Li, T., Brown, D.L., Grudowski, P.A., Eiting, C.J., Dupuis, R.D., and Campbell, J.C.: Very high-speed metal–semiconductor–metal ultraviolet photodetectors fabricated on GaN. Appl. Phys. Lett. 73, 24052407 (1998).CrossRefGoogle Scholar
Walker, D., Monroy, E., Kung, P., Wu, J., Hamilton, M., Sánchez, E.J., Diaz, J., and Razeghi, M.: High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN. Appl. Phys. Lett. 74, 762764 (1999).CrossRefGoogle Scholar
Ferguson, I., Tran, C.A., Karlicek, R.F. Jr., Feng, Z.C., Stall, R., Liang, S., Lu, Y., and Joseph, C.: GaN and AlGaN metal–semiconductor–metal photodetectors. Mater. Sci. Eng., B 50, 311314 (1997).CrossRefGoogle Scholar
Monroy, E., Calle, F., Muñoz, E., and Omnès, F.: Algan metal–semiconductor–metal photodiodes. Appl. Phys. Lett. 74, 34013403 (1999).CrossRefGoogle Scholar
Hou, M., So, H., Suria, A.J., Yalamarthy, A.S., and Senesky, D.G.: Suppression of persistent photoconductivity in AlGaN/GaN ultraviolet photodetectors using in situ heating. IEEE Electron Device Lett. 38, 5659 (2016).CrossRefGoogle Scholar
Hirsch, M.T., Wolk, J.A., Walukiewicz, W., and Haller, E.E.: Persistent photoconductivity in n-type GaN. Appl. Phys. Lett. 71, 10981100 (1997).CrossRefGoogle Scholar
Chen, H.M., Chen, Y.F., Lee, M.C., and Feng, M.S.: Persistent photoconductivity in n-type GaN. J. Appl. Phys. 82, 899901 (1997).CrossRefGoogle Scholar
Qiu, C.H. and Pankove, J.I.: Deep levels and persistent photoconductivity in GaN thin films. Appl. Phys. Lett. 70, 19831985 (1997).CrossRefGoogle Scholar
Li, J.Z., Lin, J.Y., Jiang, H.X., Asif Khan, M., and Chen, Q.: Persistent photoconductivity in a two-dimensional electron gas system formed by an AlGaN/GaN heterostructure. J. Appl. Phys. 82, 12271230 (1997).CrossRefGoogle Scholar
Zhao, Y. and Donaldson, W.R.: Systematic study on aluminum composition nonuniformity in aluminum gallium nitride metal–semiconductor–metal photodetectors. IEEE Trans. Electron. Dev. (2018).Google Scholar
Wohlmuth, W.A., Arafa, M., Mahajan, A., Fay, P., and Adesida, I.: InGaAs metal–semiconductor–metal photodetectors with engineered Schottky barrier heights. Appl. Phys. Lett. 69, 35783580 (1996).CrossRefGoogle Scholar
Shockley, W. and Prim, R.C.: Space-charge limited emission in semiconductors. Phys. Rev. 90, 753758 (1953).CrossRefGoogle Scholar
Barker, A.S. Jr. and Ilegems, M.: Infrared lattice vibrations and free-electron dispersion in GaN. Phys. Rev. B 7, 743750 (1973).CrossRefGoogle Scholar
Bogusławski, P., Briggs, E.L., and Bernholc, J.: Native defects in gallium nitride. Phys. Rev. B 51, 1725517258 (1995).CrossRefGoogle ScholarPubMed
Donaldson, W.R.: Optical probes for the characterization of surface breakdown. Proc. SPIE 871, 157164 (1988).CrossRefGoogle Scholar
Li, J., Xu, Y., Hsiang, T.Y., and Donaldson, W.R.: Picosecond response of gallium-nitride metal–semiconductor–metal photodetectors. Appl. Phys. Lett. 84, 20912093 (2004).CrossRefGoogle Scholar
Li, J.: Ultrafast metal–semiconductor–metal UV photodetectors on GaN. Ph.D. thesis, University of Rochester, New York, 2004.Google Scholar
Monroy, E., Calle, F., Pau, J.L., Muñoz, E., Omnès, F., Beaumont, B., and Gibart, P.: AlGaN-based UV photodetectors. J. Cryst. Growth 230, 537543 (2001).CrossRefGoogle Scholar
Carbone, A. and Mazzetti, P.: Grain-boundary effects on photocurrent fluctuations in polycrystalline photoconductors. Phys. Rev. B 57, 24542460 (1998).CrossRefGoogle Scholar
Ursaki, V.V., Tiginyanu, I.M., Ricci, P.C., Anedda, A., Hubbard, S., and Pavlidis, D.: Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation. J. Appl. Phys. 94, 38753882 (2003).CrossRefGoogle Scholar
Li, J., Zhao, M., and Wang, X.F.: High performance Schottky UV photodetectors based on epitaxial AlGaN thin film. Phys. B 405, 996998 (2010).CrossRefGoogle Scholar
Sze, S.M.: Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981); ch. 5, p. 307.Google Scholar
Espevik, S., Wu, C., and Bube, R.H.: Mechanism of photoconductivity in chemically deposited lead sulfide layers. J. Appl. Phys. 42, 35133529 (1971).CrossRefGoogle Scholar
Park, C.H. and Chadi, D.J.: Stability of deep donor and acceptor centers in GaN, AlN, and BN. Phys. Rev. B 55, 1299513001 (1997).CrossRefGoogle Scholar
Katz, O., Garber, V., Meyler, B., Bahir, G., and Salzman, J.: Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 79, 14171419 (2001).CrossRefGoogle Scholar