Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T19:28:41.643Z Has data issue: false hasContentIssue false

Raman scattering of cubic boron nitride films deposited from the low-pressure gas phase

Published online by Cambridge University Press:  31 January 2011

W. J. Zhang
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
S. Matsumoto
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Get access

Abstract

By introduction of the chemical effects of fluorine, thick cubic boron nitride (cBN) films with high phase purity and low residual stress were synthesized on silicon substrates by dc-bias-assisted dc jet chemical vapor deposition in an Ar–N2–BF3–H2 system. In this paper, the characterization of the films by scanning electron microscopy, glancing-angle x-ray diffraction, infrared spectroscopy, and Raman spectroscopy was done. Among these techniques, Raman spectroscopy was intensively studied, and a method was established to evaluate the crystallinity and residual stress of the cBN films from the line width and peak shift of Raman charactersitic peaks. The influences of the experimental parameters, i.e., bias voltage, substrate temperature, and deposition time, on the film quality were systematically studied. An experimental window for the deposition of cBN films was described. The cBN films deposited under optimized conditions showed the similar line width of both Raman TO and LO modes and thus a crystallinity comparable to that of 4–8-μm cBN single crystals synthesized by high-ressure and high-temperature methods.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heath, P.J., VDI-Berichte 762, 27 (1989).Google Scholar
2.Inagawa, K., Watanabe, K., Ohsone, H., Saitoh, K., and Itoh, A., J. Vac. Sci. Technol. A 5, 2696 (1987).CrossRefGoogle Scholar
3.Mieno, M. and Yoshida, T., Jpn. J. Appl. Phys. 29, L1175 (1990).Google Scholar
4.Kinder, S., IITaylor, C.A., and Clarke, R., Appl. Phys. Lett. 64, 1859 (1994).Google Scholar
5.Kester, D.J. and Messier, R., J. Appl. Phys. 72, 504 (1992).CrossRefGoogle Scholar
6.Ikeda, T., Appl. Phys. Lett. 61, 786 (1992).Google Scholar
7.Hofsaäss, H., Ronning, C., Griesmeier, U., Gross, M., Reinke, S., and Kuhr, M., Appl. Phys. Lett. 67, 46 (1995).CrossRefGoogle Scholar
8.Friedmann, T.A., Mirkarimi, P.R., Meddlin, D.L., McCarty, K.F., Klaus, E.J., Boehme, D.R., Johnsen, H.A., Mills, M.J., Ottesen, D.K., and Barbour, J.C., J. Appl. Phys. 76, 3088 (1994).CrossRefGoogle Scholar
9.Saitoh, H. and Yarbrough, W., Appl. Phys. Lett. 58, 2228 (1991).Google Scholar
10.Okamoto, M., Yokoyama, H., and Osaka, Y., Jpn. J. Appl. Phys. 29, 930 (1990).CrossRefGoogle Scholar
11.Weber, A., Bringmann, U., Nikulski, R., and Klages, C.P., Surf. Coat. Technol. 60, 493 (1993).Google Scholar
12.Karim, M., Cameron, D., Murhy, M., and Hashmi, M., Surf. Coat. Technol. 49, 416 (1991).Google Scholar
13.Dworschak, W., Jung, K., and Ehrhardt, H., Diamond Relat. Mater. 3, 337 (1994).CrossRefGoogle Scholar
14.Ichiki, T. and Yoshida, T., Appl. Phys. Lett. 64, 851 (1994).Google Scholar
15.Kuhr, M., Reine, S., and Kulisch, W., Diamond Relat. Mater. 4, 375 (1995).Google Scholar
16.Chattopadhyay, K.K., Matsumoto, S., Zhang, Y.F., Sakaguchi, I., Nishitani-Gamo, M., and Ando, T., Thin Solid Films 354, 24 (1999).Google Scholar
17.Saitoh, H., Morino, H., and Ichinose, Y., Jpn. J. Appl. Phys. 11, L1684 (1993).CrossRefGoogle Scholar
18.Berns, D.H. and Cappelli, M.A., Appl. Phys. Lett. 68, 2711, (1996).Google Scholar
19.Berns, D.H. and Cappelli, M.A., J. Mater. Res. 12, 2014 (1997).CrossRefGoogle Scholar
20.McKenzie, D.R., Sainty, W.G., and Green, D., in Synthesis and Properties of Boron Nitride, edited by Pouch, J.J. and Alterovitz, S.A. (Mater. Sci. Forum, Vol. 54/55, Trans Tech Publication, Brookfield, MA, 1990), p. 193.Google Scholar
21.Mirkarimi, P.B., McCarty, K.F., and Medlin, D.L., Mater. Sci. Eng. R21, 47 (1997).Google Scholar
22.Werninghause, T., Hahn, J., Richter, F., and Zahn, D.R.T., Appl. Phys. Lett. 70, 958 (1997).Google Scholar
23.Matsumoto, S. and Zhang, W.J., Jpn. J. Appl. Phys. 39, L442 (2000).CrossRefGoogle Scholar
24.Zhang, W.J., Matsumoto, S., Kurashima, K., and Bando, Y., Diamond Relat. Mater. 10, 1881 (2000).CrossRefGoogle Scholar
25.Herchen, H. and Cappelli, M.A., Phys. Rev. B 47, 14193 (1993).CrossRefGoogle Scholar
26.Richter, H., Wang, Z.P., and Ley, L., Solid State Commun. 39, 635 (1981).CrossRefGoogle Scholar
27.Gonzalez-Hernandez, J., Azarbayejani, G.H., Tsu, R., and Pollak, F.H., Appl. Phys. Lett. 47, 1350 (1985).Google Scholar
28.Parayanthal, P. and Pollak, F.H., Phys. Rev. Lett. 52, 1822 (1984).CrossRefGoogle Scholar
29.Tiong, K.K., Amirtharaj, P.M., Pollak, F.H., and Aspners, D.E., Appl. Phys. Lett. 44, 122 (1984).CrossRefGoogle Scholar
30.Yoshikawa, M., Mori, Y., Maegawa, M., Katagiri, G., Ishida, H., and Ishitani, A., Appl. Phys. Lett. 62, 3114 (1993).CrossRefGoogle Scholar
31.Karch, K. and Bechstedt, F., Phys. Rev. B 56, 7404 (1997).Google Scholar
32.Kern, G., Kresse, G., and Hafner, J., Phys. Rev. B 59, 8551 (1999).Google Scholar
33.Sanjurjo, J.A., Loćpez-Cruz, E., Vogl, P., and Cardona, M., Phys. Rev. B 28, 4579 (1983).CrossRefGoogle Scholar
34.Cardinale, G.F., Howitt, D.G., McCarty, K.F., Medlin, D.L., Mirkarimi, P.B., and Moody, N.R., Diamond Relat. Mater. 5, 1295 (1996).Google Scholar
35.Bartram, S.F., in Handbook of X-rays, edited by Kaelble, E.F. (McGraw-Hill Book Company, New York, 1967), p. 17–13.Google Scholar
36.Zhang, W.J. and Matsumoto, S., Appl. Phys. A 71, 469 (2000).Google Scholar
37.Robertson, J., Diamond Relat. Mater. 5, 519 (1996).Google Scholar
38.Mirkarimi, P.B., McKarty, K.F., Medlin, D.L., Wolfer, W.G., Friedmann, T.A., Klaus, E.J., Cardinale, G.F., and Howitt, D.G., Mater. Res. 9, 2925 (1994).CrossRefGoogle Scholar
39.Matsumoto, S. and Zhang, W.J., Diamond Relat. Mater. 10, 1868 (2000).Google Scholar
40.Zhang, W.J. and Matsumoto, S., Chem. Phys. Lett. 330, 243 (2000).CrossRefGoogle Scholar
41.Larsson, K. and Carlsson, J-O., J. Phys. Chem. B 103, 6533 (1999).Google Scholar
42.Mirkarimi, P.B., Medlin, D.L., McCarty, K.F., Dibble, D.C., Clift, W.M., Knapp, J.A., and Barbour, J.C., J. Appl. Phys. 82, 1617 (1997).Google Scholar
43.Feldermann, H., Merk, R., Hofsaäss, H., Ronning, C., and Zheleva, T., Appl. Phys. Lett. 74, 1552 (1999).Google Scholar
44.Bohr, S., Haubner, R., and Lux, B., Diamond Relat. Mater. 4, 714 (1995).Google Scholar