Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T23:27:14.707Z Has data issue: false hasContentIssue false

Processing and properties of highly porous Ti6Al4V mimicking human bones

Published online by Cambridge University Press:  08 March 2018

Jose Luis Cabezas-Villa
Affiliation:
IIMM and INICIT, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán C.P. 58060, México
Luis Olmos*
Affiliation:
IIMM and INICIT, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán C.P. 58060, México
Didier Bouvard
Affiliation:
University Grenoble Alpes, CNRS, SIMAP, Grenoble 38000, France
José Lemus-Ruiz
Affiliation:
IIMM, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán C.P. 58060, México
Omar Jiménez
Affiliation:
Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, Zapopan 45100, Jalisco, México
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ti6Al4V alloy samples with large pores suitable for bone implants are fabricated by pressing and sintering. Ti6Al4V powder is mixed with different volume fractions of salt particles. The sintering behavior up to 1260 °C is studied by dilatometry and pore features are observed by scanning electron microscopy and X-ray microtomography. Sintered materials with a relative density between 0.26 and 0.97 are obtained. 3D image analysis proves that large pores form a connected network when the amount of salt is 20% and above. The Young’s modulus and the yield stress of sintered materials deduced from compression tests span over wide ranges of values, which are consistent with real bone data. A simple analytical model is proposed to estimate the relative density as a function of the fraction of salt. This model combined with classical Gibson and Ashby’s power equations for mechanical properties can predict the fraction of salt required to obtain prescribed properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Amit Bandyopadhyay

References

REFERENCES

Dewidar, M.M., Khalil, K.A., and Lim, J.K.: Processing and mechanical properties of porous 316L stainless steel for biomedical applications. Trans. Nonferrous Metals Soc. 17, 468 (2007).CrossRefGoogle Scholar
Bender, S., Chalivendra, V., Rahbar, N., and El Wakil, S.: Mechanical characterization and modeling of graded porous stainless steel specimens for possible bone implant applications. Int. J. Eng. Sci. 53, 67 (2012).CrossRefGoogle Scholar
Eriksson, M., Andersson, M., Adolfsson, E., and Carlström, E.: Titanium–hydroxyapatite composite biomaterial for dental implants. Powder Metall. 49, 70 (2006).CrossRefGoogle Scholar
Rack, H.J. and Qazi, J.: Titanium alloys for biomedical applications. Mater. Sci. Eng., C 26, 1269 (2006).CrossRefGoogle Scholar
Oksiuta, Z., Dabrowski, J.R., and Olszyna, A.: Co–Cr–Mo-based composite reinforced with bioactive glass. J. Mater. Process. Technol. 209, 978 (2009).CrossRefGoogle Scholar
Dourandish, M., Godlinski, D., Simchi, A., and Firouzdor, V.: Sintering of biocompatible P/M Co–Cr–Mo alloy (F-75) for fabrication of porosity-graded composite structures. Mater. Sci. Eng., A 472, 338 (2008).CrossRefGoogle Scholar
Crosby, K.: Titanium–6Aluminum–4Vanadium for functionally graded orthopedic implant applications. Doct. Diss. 218, 1 (2013).Google Scholar
Long, M. and Rack, H.: Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 19, 16211639 (1998).CrossRefGoogle ScholarPubMed
Bahraminasab, M., Sahari, B.B., Edwards, K.L., Farahmand, F., Arumugam, M., and Hong, T.S.: Aseptic loosening of femoral components—A review of current and future trends in materials used. Mater. Des. 42, 459 (2012).CrossRefGoogle Scholar
Niinomi, M. and Nakai, M.: Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 10 (2011).CrossRefGoogle ScholarPubMed
Moyen, B.J., Lahey, P.J., Weinberg, E.H., and Harris, W.H.: Effects on intact femora of dogs of the application and removal of metal plates. A metabolic and structural study comparing stiffer and more flexible plates. J. Bone Jt. Surg., Am. 60A, 940 (1978).CrossRefGoogle Scholar
Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., and Xie, Y.M.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127 (2016).CrossRefGoogle ScholarPubMed
Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd ed., Vol. 175 (Cambridge University Press, Cambridge, United Kingdom, 1999).Google Scholar
Shen, H. and Brinson, L.C.: A numerical investigation of porous titanium as orthopedic implant material. Mech. Mater. 43, 420 (2011).CrossRefGoogle Scholar
Karageorgiou, V. and Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474 (2005).CrossRefGoogle ScholarPubMed
Takemoto, M., Fujibayashi, S., Neo, M., Suzuki, J., Kokubo, T., and Nakamura, T.: Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 26, 6014 (2005).CrossRefGoogle ScholarPubMed
Oh, I.H., Nomura, N., Masahashi, N., and Hanada, S.: Mechanical properties of porous titanium compacts prepared by powder sintering. Scr. Mater. 49, 1197 (2003).Google Scholar
Chino, Y. and Dunand, D.C.: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).CrossRefGoogle Scholar
Li, F., Li, J., Huang, T., Kou, H., and Zhou, L.: Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications. J. Mech. Behav. Biomed. Mater. 65, 814 (2017).CrossRefGoogle ScholarPubMed
Hrabe, N.W., Heinl, P., Flinn, B., Körner, C., and Bordia, R.K.: Compression-compression fatigue of selective electron beam melted cellular titanium (Ti–6Al–4V). J. Biomed. Mater. Res., Part B 99, 313 (2011).CrossRefGoogle ScholarPubMed
Cheng, X.Y., Li, S.J., Murr, L.E., Zhang, Z.B., Hao, Y.L., Yang, R., Medina, F., and Wicker, R.B.: Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 16, 153 (2012).CrossRefGoogle ScholarPubMed
Parthasarathy, J., Starly, B., Raman, S., and Christensen, A.: Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3, 249 (2010).CrossRefGoogle ScholarPubMed
Liu, Y.J., Li, S.J., Wang, H.L., Hou, W.T., Hao, Y.L., Yang, R., Sercombe, T.B., and Zhang, L.C.: Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 113, 56 (2016).Google Scholar
Sallica-Leva, E., Caram, R., Jardini, A.L., and Fogagnolo, J.B.: Ductility improvement due to martensite α′ decomposition in porous Ti–6Al–4V parts produced by selective laser melting for orthopedic implants. J. Mech. Behav. Biomed. Mater. 54, 149 (2016).CrossRefGoogle ScholarPubMed
Scott-Emuakpor, O., Holycross, C., George, T., Knapp, K., and Beck, J.: Fatigue and strength studies of titanium 6Al–4V fabricated by direct metal laser sintering. J. Eng. Gas Turbines Power 138, 022101 (2016).CrossRefGoogle Scholar
Krishna, B.V., Bose, S., and Bandyopadhyay, A.: Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 3, 997 (2007).CrossRefGoogle ScholarPubMed
Furumoto, T., Koizumi, A., Alkahari, M.R., Anayama, R., Hosokawa, A., Tanaka, R., and Ueda, T.: Permeability and strength of a porous metal structure fabricated by additive manufacturing. J. Mater. Process. Technol. 219, 10 (2015).CrossRefGoogle Scholar
Reig, L., Amigó, V., Busquets, D.J., and Calero, J.A.: Development of porous Ti6Al4V samples by microsphere sintering. J. Mater. Process. Technol. 212, 3 (2012).CrossRefGoogle Scholar
Torres, Y., Rodríguez, J.A., Arias, S., Echeverry, M., Robledo, S., Amigo, V., and Pavón, J.J.: Processing, characterization and biological testing of porous titanium obtained by space-holder technique. J. Mater. Sci. 47, 6565 (2012).CrossRefGoogle Scholar
Torres, Y., Pavón, J.J., Nieto, I., and Rodríguez, J.A.: Conventional powder metallurgy process and characterization of porous titanium for biomedical applications. Metall. Mater. Trans. B 42, 891 (2011).Google Scholar
Jorgensen, D.J. and Dunand, D.C.: Ti–6Al–4V with micro-and macropores produced by powder sintering and electrochemical dissolution of steel wires. Mater. Sci. Eng., A 527, 849 (2010).Google Scholar
Kalantari, S.M., Arabi, H., Mirdamadi, S., and Mirsalehi, S.A.: Biocompatibility and compressive properties of Ti–6Al–4V scaffolds having Mg element. J. Mech. Behav. Biomed. Mater. 48, 183 (2015).CrossRefGoogle ScholarPubMed
Torres, Y., Lascano, S., Bris, J., Pavón, J., and Rodriguez, J.A.: Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Mater. Sci. Eng., C 37, 148 (2014).CrossRefGoogle ScholarPubMed
Aşık, E.E. and Bor, Ş.: Fatigue behavior of Ti–6Al–4V foams processed by magnesium space holder technique. Mater. Sci. Eng., A 621, 157 (2015).CrossRefGoogle Scholar
Shang, H., Mohanram, A., and Bordia, R.K.: Densification and microstructural evolution of hierarchically porous ceramics during sintering. J. Am. Ceram. Soc. 98, 3424 (2015).Google Scholar
Olmos, L., Takahashi, T., Bouvard, D., Martin, C.L., Salvo, L., Bellet, D., and Di Michiel, M.: Analysing the sintering of heterogeneous powder structures by in situ microtomography. Philos. Mag. 89, 2949 (2009).CrossRefGoogle Scholar
Serra, J.: Image Analysis and Mathematical Morphology (Academic Press, London, 1982).Google Scholar
Babin, P., Della Valle, G., Chiron, H., Cloetens, P., Hoszowska, J., Pernot, P., Réguerre, A.L., Salvo, L., and Dendievel, R.: Fast X-ray tomography analysis of bubble growth and foam setting during breadmaking. J. Cereal Sci. 43, 393 (2006).CrossRefGoogle Scholar
Olmos, L., Martin, C.L., Bouvard, D., Bellet, D., and Di Michiel, M.: Investigation of the sintering of heterogeneous powder systems by synchrotron microtomography and discrete element simulation. J. Am. Ceram. Soc. 92, 1492 (2009).CrossRefGoogle Scholar
Vagnon, A., Rivière, J.P., Missiaen, J.M., Bellet, D., Di Michiel, M., Josserond, C., and Bouvard, D.: 3D statistical analysis of a copper powder sintering observed in situ by synchrotron microtomography. Acta Mater. 56, 1084 (2008).CrossRefGoogle Scholar
Marmottant, A., Salvo, L., Martin, C.L., and Mortensen, A.: Coordination measurements in compacted NaCl irregular powders using X-ray microtomography. J. Eur. Ceram. Soc. 28, 2441 (2008).CrossRefGoogle Scholar
Phani, K.K. and Niyogi, S.K.: Young’s modulus of porous brittle solids. J. Mater. Sci. 22, 257 (1987).CrossRefGoogle Scholar
Kováčik, J.: Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 18, 1007 (1999).CrossRefGoogle Scholar
Nielsen, L.F.: Elasticity and damping of porous materials and impregnated materials. J. Am. Ceram. Soc. 67, 93 (1984).CrossRefGoogle Scholar
Bandyopadhyay, A., Espana, F., Balla, V.K., Bose, S., Ohgami, Y., and Davies, N.M.: Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 6, 1640 (2010).CrossRefGoogle ScholarPubMed
Li, J.P., Habibovic, P., van den Doel, M., Wilson, C.E., de Wijn, J.R., van Blitterswijk, C.A., and de Groot, K.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 28, 2810 (2007).CrossRefGoogle ScholarPubMed
Takahashi, Y. and Tabata, Y.: Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J. Biomater. Sci., Polym. Ed. 15, 41 (2004).Google Scholar
Itälä, A.I., Ylänen, H.O., Ekholm, C., Karlsson, K.H., and Aro, H.T.: Pore diameter of more than 100 μm is not requisite for bone ingrowth in rabbits. J. Biomed. Mater. Res., Part A 58, 679 (2001).Google Scholar
Piemme, J.C.: Titanium PM for Orthopedic Implants. World PM2016 Proceedings—Biomedical Applications. Manuscript refereed by Dr. José Manuel Martin (2016).Google Scholar
Grimm, M. and Williams, J.: Measurements of permeability in human calcaneal trabecular bone. J. Biomech. 30, 743 (1997).Google Scholar
Nauman, E., Fong, K., and Keaveny, T.: Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27, 517 (1999).CrossRefGoogle ScholarPubMed
Wen, C.E., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T., and Mabuchi, M.: Processing and mechanical properties of autogenous titanium implant materials. J. Mater. Sci. Mater. Med. 13, 397 (2002).CrossRefGoogle ScholarPubMed
Gagg, G., Ghassemieh, E., and Wiria, F.E.: Effects of sintering temperature on morphology and mechanical characteristics of 3D printed porous titanium used as dental implant. Mater. Sci. Eng., C 33, 3858 (2013).CrossRefGoogle ScholarPubMed
Barui, S., Chatterjee, S., Mandal, S., Kumar, A., and Basu, B.: Microstructure and compression properties of 3D powder printed Ti–6Al–4V scaffolds with designed porosity: Experimental and computational analysis. Mater. Sci. Eng., C 70, 812 (2017).CrossRefGoogle ScholarPubMed
Singh, R., Lee, P.D., Lindley, T.C., Dashwood, R.J., Ferrie, E., and Imwinkelried, T.: Characterization of the structure and permeability of titanium foams for spinal fusion devices. Acta Biomater. 5, 477 (2009).CrossRefGoogle ScholarPubMed
Zhang, Z., Jones, D., Yue, S., Lee, P.D., Jones, J.R., Sutcliffe, C.J., and Jones, E.: Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Mater. Sci. Eng., C 33, 4055 (2013).CrossRefGoogle ScholarPubMed
Despois, J.F. and Mortensen, A.: Permeability of open-pore microcellular materials. Acta Mater. 53, 1381 (2005).Google Scholar
Dias, M.R., Fernandes, P.R., Guedes, J.M., and Hollister, S.J.: Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45, 938 (2012).CrossRefGoogle ScholarPubMed
Camron, H.U., Pilliar, R.M., and Macnab, I.: The rate of bone ingrowth into porous metal. J. Biomed. Mater. Res., Part A 10, 295 (1976).CrossRefGoogle Scholar
Bobyn, J.D., Pilliar, R.M., Cameron, H.U., and Weatherly, G.C.: The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 150, 263 (1980).CrossRefGoogle Scholar