Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T22:21:05.605Z Has data issue: false hasContentIssue false

Processing- and composition-dependent characteristics of chemical solution deposited Bi4−xLaxTi3O12 thin films

Published online by Cambridge University Press:  31 January 2011

Di Wu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
Aidong Li
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
Tao Zhu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
Zhifeng Li
Affiliation:
National Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083, China
Zhiguo Liu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Naiben Ming
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Get access

Abstract

Thin films of lanthanum substituted bismuth titanate, Bi4−xLaxTi3O12 (BLTx), were prepared by chemical solution deposition. Crystallized BLTx films were obtained by rapid thermal annealing at a temperature as low as 650 °C. Structural and electrical characteristics of crystalline BLTx films were studied as functions of La composition. Structure characterization was conducted by x-ray diffraction and Raman spectroscopy. The lowest lattice vibration mode around 116 cm−1 showed softening with increasing lanthanum composition. Surface morphology of BLTx films were recorded by scanning electron microscopy. BLTx films have saturated hysteresis loops with remnant polarization of 9.7, 12.3, and 4.5 μC/cm2, respectively, for x = 0.50, 0.75, and 1.00 films. BLT0.75 films showed fatigue-free behavior over 250 kV/cm, 50 kHz cycling, which could be compared with that of SrBi2Ta2O9 thin films. Fatigue resistance decrease at lower cycling field. The field dependence of fatigue property was discussed briefly in terms of competition between domain pinning and field-assisted unpinning.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, J.F. and Paz de Araujo, C.A., Science 246, 1400 (1989).Google Scholar
2.Taylor, D.J., Jones, R.E., Zurcher, P., Chu, P., Lii, Y.T., Jiang, B., and Gillespie, S.J., Appl. Phys. Lett. 68, 2300 (1996).Google Scholar
3.Paz de Araujo, C.A., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 12 (1995).Google Scholar
4.Scott, J.F., Ferroelectric Rev. 1, 1 (1998).Google Scholar
5.Park, B.H., Kang, B.S., Bu, S.D., Noh, T.W., Lee, J., and Jo, W., Nature 401, 682 (1999).CrossRefGoogle Scholar
6.Robertson, J., Chen, C.W., Warren, W.L., Gutleben, C.D., Appl. Phys. Lett. 69, 1704 (1995).Google Scholar
7.Al-Shareef, H.N., Dimos, D., Boyle, T.J., Warren, W.L., and Tuttle, B.A., Appl. Phys. Lett. 68, 690 (1996).CrossRefGoogle Scholar
8.Dimos, D., Al-Shareef, H.N., Warren, W.L., and Tuttle, B.A., J. Appl. Phys. 80, 1682 (1994).CrossRefGoogle Scholar
9.Wu, D., Li, A.D., Ling, H.Q., Yu, T., Liu, Z.G., and Ming, N.B., Appl. Phys. Lett. 76, 2208 (2000).Google Scholar
10.Chen, T.C., Li, T.K., Zhang, X.B., Desu, S.B., J. Mater. Res. 12, 1569 (1997).CrossRefGoogle Scholar
11.Joshi, P.C. and Krupanidhi, S.B., J. Appl. Phys. 72, 5827 (1992).CrossRefGoogle Scholar
12.Joshi, P.C. and Krupanidhi, S.B., Appl. Phys. Lett. 62, 1928 (1993).CrossRefGoogle Scholar
13.Du, X.F. and Chen, I.W., J. Am. Ceram. Soc. 81, 3253 (1998).CrossRefGoogle Scholar
14.Katagiri, Y., Nasu, H., Matsuka, J., and Kamiya, K., J. Am. Ceram. Soc. 77, 673 (1994).Google Scholar
15.Guzman, G., Barboux, P., and Perriere, J., J. Appl. Phys. 77, 635 (1995).CrossRefGoogle Scholar
16.Wright, J.S. and Francis, L.F., J. Mater. Res. 8, 1712 (1993).Google Scholar
17.Li, Aidong, Wu, Di, Ge, Chuanzhen, , Peng, Ma, Wenhui, Zhang, Mingsheng, Xu, Cunyi, Zuo, Jian, and Ming, Naiben, J. Appl. Phys. 85, 2146 (1999).Google Scholar
18.Wu, Di, Li, Aidong, Ge, Chuanzhen, , Peng, Xu, Chunyi, Xu, Jian, and Ming, Naiben, Thin Solid Films 322, 323 (1998).Google Scholar
19.Fu, D.S., Ogawa, T., Suzuki, H., Ishikawa, K., Appl. Phys. Lett. 77, 1532 (2000).CrossRefGoogle Scholar
20.Graves, P.R., Hua, G., Myhra, S., and Thompson, J.G., J. Solid State Chem. 114, 112 (1995).CrossRefGoogle Scholar
21.Taguchi, I., Pignolet, A., Wang, L., Proctor, M., Levy, F., and Schmid, P.E., J. Appl. Phys. 73, 394 (1993).Google Scholar
22.Kojima, S., Imaizumi, R., Hamazaki, S., and Takashige, M., Jpn. J. Appl. Phys. 33 (Pt. 1), 5559 (1994).Google Scholar
23.Idink, H., Srikanth, V., White, W.B., and Subbarao, E.C., J. Appl. Phys. 76, 1819 (1994).Google Scholar
24.Takenaka, T. and Sakata, K., Ferroelectrics 38, 769 (1981).CrossRefGoogle Scholar
25.Klar, P.J. and Rentschler, T., Solid State Commun. 103, 341 (1997).CrossRefGoogle Scholar
26.Srinivas, K. and James, A.R., J. Appl. Phys. 86, 3885 (1999).Google Scholar
27.Park, B.H., Hyun, S.J., Bu, S.D., and Noh, T.W., Appl. Phys. Lett. 74, 1907 (1999).CrossRefGoogle Scholar