Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T01:20:27.583Z Has data issue: false hasContentIssue false

Preparation of core–shell nanostructured black nano-TiO2 by sol–gel method combined with Mg reduction

Published online by Cambridge University Press:  16 November 2018

Yuxin Li
Affiliation:
School of Science, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Rong Fu
Affiliation:
School of Science, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Xiangdong Wang*
Affiliation:
School of Science, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Xiaoling Guo*
Affiliation:
School of Textile and Materials, Xi’an Polytechnic University, Xi’an 710048, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Black nano-TiO2 samples with core–shell nanostructure were successfully prepared by sol–gel method combined with Mg reduction using butyl titanate as titanium source and calcining at 500°C in air atmosphere and at 400–600°C in nitrogen atmosphere. The prepared black TiO2 samples were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectra, photoluminescence emission spectra, N2 adsorption–desorption, and ultraviolet–visible spectroscopy. The results show that the black TiO2 exhibits a crystalline core–disordered shell structure composed of disordered surface and oxygen vacancies, and the thickness of the disordered layer is about 2–3 nm. The optical absorption properties of black nano-TiO2 samples have been remarkably enhanced in visible light region. Compared with the white TiO2, the reduced black TiO2 samples exhibit enhanced photocatalytic hydrogen production under the full solar wavelength range of light, and the sample prepared with the Mg and TiO2 ratio of 9:1 calcined at 500 °C has the maximum hydrogen production rate.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
Chen, X.B., Shen, S.H., Guo, L.J., and Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).CrossRefGoogle ScholarPubMed
Yang, Y.J., Zhang, B., Wan, H.Y., and Zhang, G.P.: Optimizing fatigue performance of nacre-mimetic PE/TiO2 nanolayered composites by tailoring thickness ratio. J. Mater. Res. 33, 1543 (2018).CrossRefGoogle Scholar
Pan, Y.C., Shen, Y.S., Jin, Q.J., and Zhu, S.M.: Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature. J. Mater. Res. 33, 2414 (2018).CrossRefGoogle Scholar
Wada, N., Yokomizo, Y., Yogi, C., Katayama, M., Tanaka, A., Kojima, K., Inada, Y., and Ozutsumi, K.: Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33, 467 (2018).CrossRefGoogle Scholar
Wen, J.Q., Li, X., Liu, W., Fang, Y.P., Xie, J., and Xu, Y.H.: Review (special issue on photocatalysis): Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).CrossRefGoogle Scholar
Wu, F.J., Li, X., Liu, W., and Zhang, S.T.: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Surf. Sci. 405, 60 (2017).CrossRefGoogle Scholar
Manju, J. and Jawhar, S.M.J.: Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method. J. Mater. Res. 33, 1534 (2018).CrossRefGoogle Scholar
Zhou, Y., Liu, Y.C., Liu, P.W., Zhang, W.Y., Xing, M.Y., and Zhang, J.L.: A facile approach to further improve the substitution of nitrogen into reduced TiO2−x with an enhanced photocatalytic activity. Appl. Catal., B 170, 66 (2015).CrossRefGoogle Scholar
Zhang, K., Wang, X.D., He, T.O., Guo, X.L., and Feng, Y.M.: Preparation and photocatalytic activity of B–N co-doped mesoporous TiO2. Powder Technol. 253, 608 (2014).CrossRefGoogle Scholar
Zhang, H., Zhang, J.L., Sun, R.J., and Zhou, Y.X.: Preparation of magnetic and photocatalytic cenosphere deposited with Fe3O4/SiO2/Eu-doped TiO2 core/shell nanoparticles. J. Mater. Res. 30, 3700 (2015).CrossRefGoogle Scholar
Zhao, Z.Y., Feng, M.C., Peng, Z.J., Huang, H.W., Guo, Z.H., and Li, Z.H.: Molten-salt fabrication of (N,F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of methylene blue under visible light irradiation. J. Mater. Res. 33, 1411 (2018).CrossRefGoogle Scholar
Liu, B., Chen, H.M., Liu, C., Andrews, S.C., Hahn, C., and Yang, P.: Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 135, 9995 (2013).CrossRefGoogle ScholarPubMed
Dahlman, C.J., Tan, Y., Milliron, D.J., and Marcus, A.: Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc. 137, 9160 (2015).CrossRefGoogle ScholarPubMed
Liu, M.H., Hou, Y.C., and Qu, X.F.: Enhanced power conversion efficiency of dye-sensitized solar cells with samarium doped TiO2 photoanodes. J. Mater. Res. 32, 3469 (2017).CrossRefGoogle Scholar
Li, F., Han, T.H., Wang, H.G., Zheng, X.M., Wan, J.M., and Ni, B.K.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).CrossRefGoogle Scholar
Zhang, K., Wang, X.D., Guo, X.L., He, T.O., and Feng, Y.M.: Preparation of highly visible light active Fe–N co-doped mesoporous TiO2 photocatalyst by fast sol–gel method. J. Nanopart. Res. 16, 2246 (2014).CrossRefGoogle Scholar
Qi, K.Z., Cheng, B., Yu, J.G., and Ho, W.K.: Black TiO2 (B)/anatase bicrystalline TiO2−x nanofibers with enhanced photocatalytic performance. Chin. J. Catal. 38, 1936 (2017).CrossRefGoogle Scholar
Chen, X.B., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).CrossRefGoogle ScholarPubMed
Yang, Y., Kao, L.C., Liu, Y.Y., Sun, K., Yu, H.T., Guo, J.H., Liou, S.Y.H., and Hoffmann, M.R.: Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment. ACS Catal. 8, 4278 (2018).CrossRefGoogle ScholarPubMed
Song, H., Li, C.X., Lou, Z.R., Ye, Z.Z., and Zhu, L.P.: Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ACS Sustainable Chem. Eng. 5, 8982 (2017).CrossRefGoogle Scholar
Jiang, J.J., Xing, Z.P., Li, M., Li, Z.Z., Wu, X.Y., Hu, M.P., Wan, J.F., Wang, N., Besov, A.S., and Zhou, W.: In situ Ti3+/N-codoped three-dimensional (3D) urchinlike black TiO2 architectures as efficient visible-light-driven photocatalysts. Ind. Eng. Chem. Res. 56, 7948 (2017).CrossRefGoogle Scholar
Zhang, X.C., Hu, W.Y., Zhang, K.F., Wang, J.N., Sun, B.J., Li, H.Z., Qiao, P.Z., Wang, L., and Zhou, W.: Ti3+ self-doped black TiO2 nanotubes with mesoporous nanosheet architecture as efficient solar-driven hydrogen evolution photocatalysts. ACS Sustainable Chem. Eng. 5, 6894 (2017).CrossRefGoogle Scholar
Zhang, K. and Park, J.H.: Surface localization of defects in black TiO2: Enhancing photoactivity or reactivity. J. Phys. Chem. Lett. 8, 199 (2017).CrossRefGoogle ScholarPubMed
Chen, X.B., Li, C., Gratzel, M., Kostecki, R., and Mao, S.S.: Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909 (2012).CrossRefGoogle ScholarPubMed
Li, X., Yu, J.G., Low, J.X., Fang, Y.P., Xiao, J., and Chen, X.B.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).CrossRefGoogle Scholar
Li, L., Song, L., Zhu, L.F., Yan, Z., and Cao, X.B.: Black TiO2−x with stable surface oxygen vacancies as the support of efficient gold catalysts for water–gas shift reaction. Catal. Sci. Technol. 8, 1277 (2018).CrossRefGoogle Scholar
Liu, X.H., Hou, B.F., Wang, G., Cui, Z.Q., Zhu, X., and Wang, X.B.: Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. J. Mater. Res. 33, 674 (2018).CrossRefGoogle Scholar
Li, L.C., Shi, K.Z., Tu, R., Qian, Q., Li, D., Yang, Z.H., and Lu, X.H.: Black TiO2 (B)/anatase bicrystalline TiO2−x nanofibers with enhanced photocatalytic performance. Chin. J. Catal. 11, 1943 (2015).CrossRefGoogle Scholar
Chen, X.B., Liu, L., and Huang, F.Q.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).CrossRefGoogle ScholarPubMed
Liu, Y., Su, D., Zhang, Y.Z., Wang, L.L., Yang, G., Shen, F., Deng, S.H., Zhang, X.H., and Zhang, S.R.: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757 (2017).CrossRefGoogle Scholar
Zhou, W., Li, W., Wang, J.Q., Qu, Y., Yang, Y., Xie, Y., Zhang, K., Wang, L., Fu, H., and Zhao, D.: Order mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280 (2014).CrossRefGoogle Scholar
Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).CrossRefGoogle Scholar
Zhu, G., Shan, Y., Lin, T., Zhao, W., Xu, J., Tian, Z., Zhang, H., Zheng, C., and Huang, F.: Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale 8, 4705 (2016).CrossRefGoogle ScholarPubMed
Zhao, Z., Tan, H., Zhao, H., Lv, Y., Zhou, L.J., Song, Y., and Sun, Z.: Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 50, 2755 (2014).CrossRefGoogle ScholarPubMed
Tan, H.Q., Zhao, Z., Niu, M., and Mao, C.Y.: A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 6, 10216 (2014).CrossRefGoogle ScholarPubMed
Ramesh, M., Rao, M.P.C., Anandan, S., and Nagaraja, H.: Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J. Mater. Res. 33, 601 (2018).CrossRefGoogle Scholar
Wang, Z., Yang, C.Y., Lin, T.Q., and Yin, H.: Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6, 3007 (2013).CrossRefGoogle Scholar
Chen, B., Beach, J.A., Maurya, D., and Moore, R.B.: Fabrication of black hierarchical TiO2 nanostructures with enhanced photocatalytic activity. RSC Adv. 4, 29443 (2014).CrossRefGoogle Scholar
Cui, H.L., Zhao, W., Yang, C.Y., and Yin, H.: Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J. Mater. Chem. A 2, 8612 (2014).CrossRefGoogle Scholar
Hu, M.Q., Cao, Y., Li, Z.Z., Yang, S.L., and Xing, Z.P.: Ti3+ self-doped mesoporous black TiO2/SiO2 nanocomposite as remarkable visible light photocatalyst. Appl. Surf. Sci. 426, 734 (2017).CrossRefGoogle Scholar
Barman, A., Saini, C.P., Sarkar, P.K., Roy, A., Satpati, B., Kanjilal, D., Ghosh, S.K., Dhar, S., and Kanjilal, A.: Probing electron density across Ar+ irradiation-induced self-organized TiO2−x nanochannels for memory application. Appl. Phys. Lett. 108, 244104 (2016).CrossRefGoogle Scholar
Liu, Y., Tian, L.H., Tan, X.Y., Li, X., and Chen, X.B.: Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 62, 431 (2017).CrossRefGoogle Scholar
Xia, T. and Chen, X.B.: Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A 1, 2983 (2013).CrossRefGoogle Scholar
Li, K.X., Xu, J.L., Yan, X.D., Liu, L., Chen, X.B., Luo, Y.S., He, J., and Shen, D.Z.: The origin of the strong microwave absorption in black TiO2. Appl. Phys. Lett. 108, 183102 (2016).CrossRefGoogle Scholar
Sinhamahapatra, A., Jeon, J.P., and Yu, J.S.: A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8, 3539 (2015).CrossRefGoogle Scholar
Kumar, C.A.V., Rajadurai, J.S., and Sundararajan, S.: Performance enrichment on tribological characteristics of powder metallurgy processed aluminium particulate composites by inclusion of rutile (TiO2). J. Mater. Res. 31, 2445 (2016).CrossRefGoogle Scholar
Xia, T., Li, N., Zhang, Y.L., Kruger, M.B., Murowchick, J., Selloni, A., and Chen, X.B.: Directional heat dissipation across the interface in Anatase–Rutile nanocomposites. ACS Appl. Mater. Interfaces 5, 9883 (2013).CrossRefGoogle ScholarPubMed
Wang, X.D., Fu, R., Yin, Q.Q., Wu, H., Guo, X.L., Xu, R.H., and Zhong, Q.Y.: Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity. J. Nanopart. Res. 20, 89 (2018).CrossRefGoogle Scholar
Green, M.A., Xu, J.L., Liu, H.L., Zhao, J.Y., Li, K.X., Liu, L., Qin, H., Zhu, Y.M., Shen, D.Z., and Chen, X.B.: Terahertz absorption of hydrogenated TiO2 nanoparticles. Mater. Today Phys. 4, 64 (2018).CrossRefGoogle Scholar
Xia, T., Zhang, C., Oyler, N.A., and Chen, X.B.: Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 25, 6905 (2013).CrossRefGoogle ScholarPubMed
Riaz, A., Qi, H.J.Y., Fang, Y., Xu, J.F., Zhou, C.M., Jin, Z.G., Hong, Z.L., Zhi, M.J., and Liu, Y.: Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. J. Mater. Res. 31, 3036 (2016).CrossRefGoogle Scholar
Yan, Y., Chen, T.R., Zou, Y.C., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).CrossRefGoogle Scholar