Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:37:35.145Z Has data issue: false hasContentIssue false

Preparation and phase control of nanocrystalline silver indium sulfides via a hydrothermal route

Published online by Cambridge University Press:  31 January 2011

J. Q. Hu*
Affiliation:
Structure Research Laboratory and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
B. Deng
Affiliation:
Structure Research Laboratory and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
K. B. Tang
Affiliation:
Structure Research Laboratory and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
C. R. Wang
Affiliation:
Structure Research Laboratory and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Y. T. Qian
Affiliation:
Structure Research Laboratory and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
*
a)Address all correspondence to this author. Present address: Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China e-mail: [email protected]
Get access

Abstract

A hydrothermal route was proposed to prepare and control nanocrystalline silver indium sulfides (orthorhombic AgInS2, tetragonal AgInS2, and cubic AgIn5S8). The reaction was carried out in an autoclave in the temperature range of 100–280 °C with AgCl, InCl3, and thiourea as reactants. X-ray powder diffraction patterns and transmission electron microscopy images showed that the products were AgInS2 and AgIn5S8 phases and well crystallized with grain diameter in the range of 20–70 nm. X-ray photoelectron spectra of the single AgIn5S8 phase revealed the surface stoichiometry (AgIn5.05S8.11), and its room temperature Raman spectrum showed a strong peak at 130 cm−1 and a weak peak at around 290 cm−1. The influence of reaction temperature on the phases in the final products was investigated. A possible reaction mechanism of the formation of silver indium sulfides was also briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shay, J.L., Tell, B., Schiavone, L. M., Kasper, H. M., and Thiel, F., Phys. Rev. B 9, 1719 (1974).CrossRefGoogle Scholar
2.Paorici, C., Zanotti, L., Romeo, N., Sberveglieri, G., and Tarricone, L., Mater. Res. Bull. 12, 1207 (1977).CrossRefGoogle Scholar
3.Wells, A. F., Structure Inorganic Chemistry, 3rd ed. (Clarendon Press, Oxford, United Kingdom, 1967), p. 214.Google Scholar
4.Okamoto, K. and Kinoshite, K., Solid-State Electron. 19, 31 (1976).CrossRefGoogle Scholar
5.Roth, R. S., Parker, H. S., and Brower, W. S., Mater. Res. Bull. 8, 333 (1973).CrossRefGoogle Scholar
6.Górska, M., Beaulieu, R., Lofferski, J. J., and Roessler, B., Thin Solid Films 67, 341 (1980).CrossRefGoogle Scholar
7.Ueno, Y., Hattori, Y., Ito, M., Sugiura, T., and Minoura, H., Sol. En-ergy Mater. Sol. Cells 26, 229 (1992).CrossRefGoogle Scholar
8.Lange, F. F., Science 273, 903 (1996).CrossRefGoogle Scholar
9.Sheldrich, W.S. and Wachhold, M., Angew. Chem., Int. Ed. Engl. 36, 206 (1997).CrossRefGoogle Scholar
10.Hu, J. Q., Lu, Q. Y., Tang, K. B., Qian, Y. T., Zhou, G. E., and Liu, X. M., Chem. Commun. 1093 (1999).CrossRefGoogle Scholar
11.Rozman, M. and Drofenik, M., J. Am. Chem. Soc. 78, 2449 (1995).Google Scholar
12.Moon, J., Li, T., Randall, C. A., and Adair, J. H., J. Mater. Res. 12, 189 (1997).CrossRefGoogle Scholar
13.Li, Y. D., Duan, X. F., Liao, H. W., and Qian, Y. T., Chem. Mater. 1, 1 (1998).Google Scholar
14. Powder Diffraction File No. 25–1330, International Centre for Diffraction Data, Swarthmore, PA.Google Scholar
15.Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., in Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J., Physical Electronics Division, Perkin-Elmer Corpo-ration, Eden Prarie, MN, (1992), p. 231.Google Scholar
16.Gasanly, N. M., Magomedov, A. Z., Melnik, N. N., and Salamov, B. G., Phys. Status Solidi B 177, K31 (1993).Google Scholar
17.Sinha, M. M., Ashdhir, P., Gupta, H. C., and Tripathi, B. B., Phys. Status Solidi B 187, K33 (1995).CrossRefGoogle Scholar
18.Vranka, R.G. and Amma, E. L., J. Am. Chem. Soc. 88, 4270 (1966).CrossRefGoogle Scholar
19.Gash, A. G., Griffith, E. H., Spofford, W. A., and Amma, E. L., J. Chem. Soc., Chem. Commun. 256 (1973).CrossRefGoogle Scholar
20.Golovnev, N. N., Primakov, A. S., and Gologneva, I. I., Zh. Neorg. Khim. 40, 973 (1995).Google Scholar
21.Bott, R. C., Bowmaker, G. A., Davis, C. A., Hope, G. A., and Jones, B. E., Inorg. Chem. 37, 651 (1998).CrossRefGoogle Scholar
22.Mironov, I.V. and Tsvelodub, L. D., J. Appl. Spectroscopy 64, 470 (1998).CrossRefGoogle Scholar
23.Aamrani, F. Z. EI, Garcia-Raurich, J., Sastre, A., Beyer, L., and Florido, A., Anal. Chim. Acta 402, 129 (1999).CrossRefGoogle Scholar
24.Kitaev, G.E. and Sokolva, T. P., Russ. J. Inorg. Chem. 15, 167 (1970).Google Scholar
25.Ostrovskaya, I. K., Kitaev, G. A., and Velijanov, A. A., Russ. J. Phys. Chem. 50, 956 (1976).Google Scholar
26.Yu, S. H., Shu, L., Yang, J., Han, Z. H., Qian, Y. T., and Zhang, Y. H., J. Mater. Res. 14, 4157 (1999).CrossRefGoogle Scholar