Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T22:34:47.020Z Has data issue: false hasContentIssue false

Precipitation of multilayered core–shell TiO2 composite nanoparticles onto polymer layers

Published online by Cambridge University Press:  26 November 2012

Mingtai Wang*
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
Lide Zhang
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A composite film of titanium dioxide (TiO2) nanoparticles and hydrolyzed styrene–maleic anhydride alternating copolymer (HSMA) was obtained on a substrate when a TiCl4 solution was heated at 80 °C with a spin-cast thin HSMA film present in the solution. The composite film was characterized with x-ray photoelectron spectroscopy and transmission electron microscopy. Results revealed that TiO2 nanoparticles discretely dispersed on the polymer layer, and they were dominantly rutile phase, of a spherical shape and 18–20 nm in diameter. In contrast, mainly amorphous TiO2 powders were obtained from the identical TiCl4 solution by drying the solution with the absence of the HSMA film. The TiO2 nanoparticles deposited on the polymer layer were regarded to contain polymer chains, and a multilayered core–shell model was suggested for the formation of these composite nanoparticles. It is regarded that the core of a composite particle consisted of an anatase-phase TiO2 colloidal nanoparticle, while the shell layer was made of rutile-phase TiO2/polymer multilayers; the composite particles formed by a layer-by-layer self-assembly of TiO2 and polymer layers analogous to biomineralization, where the polymer promoted the crystallization of rutile-phase TiO2 when TiO2 deposited from solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.O’Regan, B. and Grätzel, M., Nature 335, 737 (1991).CrossRefGoogle Scholar
2.Fitzgibbons, E.T., Sladek, K.J., and Hartwig, W.H., J. Electrochem. Soc. 119, 735 (1972).CrossRefGoogle Scholar
3.Samsonov, G.V., The Oxide Handbook (Plenum, New York, 1973).CrossRefGoogle Scholar
4.Vinodgopal, K., Hotchandani, S., and Kamat, P.V., J. Phys. Chem. 97, 9040 (1993).CrossRefGoogle Scholar
5.Nagpal, V.J., Davis, R.M., and Desu, S.B., J. Mater. Res. 10, 3068 (1995).CrossRefGoogle Scholar
6.Selvaraj, U., Prasadarao, A.V., Komarreni, S., and Roy, R., J. Am. Ceram. Soc. 75, 1167 (1992).CrossRefGoogle Scholar
7.Chrysicopoulou, P., Davazoglou, D., Trapalis, Chr., and Kordas, G., Thin Solid Films 323, 188 (1998).CrossRefGoogle Scholar
8.Kotov, N., Dékány, I., and Fendler, J.H., J. Phys. Chem. 99, 13065 (1995).CrossRefGoogle Scholar
9.Fendler, J.H. and Meldrum, F.C., Adv. Mater. 7, 607 (1995).CrossRefGoogle Scholar
10.Liu, Y., Wang, A., and Claus, R., J. Phys. Chem. B 101, 1385 (1997).CrossRefGoogle Scholar
11.Kovtyukhova, N., Ollivier, P.J., Chizhik, S., Dubravin, A., Buzaneva, E., Gorchinskiy, A., Marchenko, A., and Smirnova, N., Thin Solid Films 337, 166 (1999).CrossRefGoogle Scholar
12.Rosidian, A., Liu, Y., and Claus, R.O., Adv. Mater. 10, 1087 (1998).3.0.CO;2-O>CrossRefGoogle Scholar
13.Shin, H., Collins, R.J., DeGuire, M.R., Heuer, A.H., and Sukenik, C.N., J. Mater. Res. 10, 692 (1995).CrossRefGoogle Scholar
14.Shin, H., Collins, R.J., DeGuire, M.R., Heuer, A.H., and Sukenik, C.N., J. Mater. Res. 10, 699 (1995).CrossRefGoogle Scholar
15.Collins, R.J., Shin, H., DeGuire, M.R., Heuer, A.H., and Sukenik, C.N., Appl. Phys. Lett. 69, 860 (1996).CrossRefGoogle Scholar
16.Baskaran, S., Song, L., Liu, J., Chen, Y.L., and Graff, G.L., J. Am. Ceram. Soc. 81, 401 (1998).CrossRefGoogle Scholar
17.Xiao, Z., Su, L., Gu, N., Lu, Z., and Wei, Y., Thin Solid Films 333, 25 (1998).CrossRefGoogle Scholar
18.Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Veis, A., and Caplan, A.I., Science 255, 1098 (1992).CrossRefGoogle Scholar
19.Mann, S., Angew. Chem. Int. Ed. Engl. 39, 3392 (2000).3.0.CO;2-M>CrossRefGoogle Scholar
20.Bunker, B.C., Rieke, P.C., Tarasevich, B.J., Campbell, A.A., Fryxell, G.E., Graff, G.L., Song, L., Liu, J., Virden, J.W., and McVay, G.L., Science 264, 48 (1994).CrossRefGoogle Scholar
21.Agarwal, M., DeGuire, M.R., and Heuer, A.H., J. Am. Ceram. Soc. 82, 2967 (1997).CrossRefGoogle Scholar
22.Mann, S., Archibald, D.D., Didymus, J.M., Douglas, T., Heywood, B.R., Meldrum, F.C., and Reeves, N.J., Science 261, 1286 (1993).CrossRefGoogle Scholar
23.Stupp, S.I. and Braun, P.V., Science 277, 1242 (1997).CrossRefGoogle Scholar
24.Wang, M., Zhu, Z., Wang, S., and Zhang, L., Polymer 40, 7387 (1999).CrossRefGoogle Scholar
25.Wang, M., Zhu, X., and Zhang, L., J. Appl. Polym. Sci. 75, 267 (2000).3.0.CO;2-S>CrossRefGoogle Scholar
26.Braun, D., Cherdron, H., Kern, W., Techniques of Polymer Synthesis and Characterization (John Wiley, London, U.K., 1972).Google Scholar
27.Rabek, J.F., Experimental Methods in Polymer Chemistry— Physical Principles and Applications (John Wiley & Sons, New York, 1980).Google Scholar
28.Wu, S., Kang, E.T., Neoh, K.G., Han, H.S., and Tan, K.L., Macromolecules 32, 186 (1999).CrossRefGoogle Scholar
29.Wagner, C.D., Riggs, W.M., Davis, L.E., and Moulder, J.F., Handbook for X-ray Photoelectron Spectroscopy, edited by Muilenberg, G.E.. (Perkin-Elmer Corp., Physical Electronics Division, 6509 Flying Cloud Drive, Eden Prairie, MN 55344, 1979).Google Scholar
30.Carley, A.F., Chalker, P.R., Riviere, J.C., and Roberts, M.W., J. Chem. Soc., Faraday Trans. I 83, 351 (1987).CrossRefGoogle Scholar
31.Kim, S-J., Park, S-D., and Jeong, Y.H., J. Am. Ceram. Soc. 82, 927 (1999).CrossRefGoogle Scholar
32.Mann, S., Nature 332, 119 (1988).CrossRefGoogle Scholar
33.Chen, T. and Somasundaran, P., J. Am. Ceram. Soc. 81, 140 (1998).CrossRefGoogle Scholar
34.Rogach, A., Susha, A., Caruso, F., Sukhorukov, G., Kornowski, A., Kershaw, S., Möhwald, H., Eychmüller, A., and Weller, H., Adv. Mater. 12, 333 (2000);3.0.CO;2-X>CrossRefGoogle Scholar
Caruso, F., Susha, A.S., Giersig, M., and Möhwald, H., Adv. Mater. 11, 950 (1999);3.0.CO;2-T>CrossRefGoogle Scholar
Caruso, F. and Möhwald, H., Langmuir 15, 8276 (1999).CrossRefGoogle Scholar
35.Schüler, C. and Caruso, F., Macromol. Rapid Commun. 21, 750 (2000);3.0.CO;2-3>CrossRefGoogle Scholar
Caruso, F. and Schüler, C., Langmuir 16, 9595 (2000).CrossRefGoogle Scholar
36.Decher, G., Science 277, 1232 (1997).CrossRefGoogle Scholar
37.Serpone, N., Lawless, D., and Khairutdinov, R., J. Phys. Chem. 99, 16646 (1995).CrossRefGoogle Scholar
38.Brinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, San Diego, CA, 1990).Google Scholar
39.Lin, H., Kozuka, H., and Yoko, T., Thin Solid Films 315, 111 (1998).CrossRefGoogle Scholar