Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T21:10:04.390Z Has data issue: false hasContentIssue false

PMMA as an effective protection layer against the oxidation of P3HT and MDMO-PPV by ozone

Published online by Cambridge University Press:  08 May 2018

Andreas Früh
Affiliation:
Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
Hans-Joachim Egelhaaf*
Affiliation:
Bavarian Center for Applied Energy Research, Solar Factory of the Future, 90429 Nuremberg, Germany
Holger Hintz
Affiliation:
Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
Dustin Quinones
Affiliation:
Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
Christoph J. Brabec
Affiliation:
Bavarian Center for Applied Energy Research, Solar Factory of the Future, 90429 Nuremberg, Germany; and iMEET, Friedrich Alexander-University, Erlangen 91058, Germany
Heiko Peisert
Affiliation:
Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
Thomas Chassé
Affiliation:
Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The protective effect of poly(methylmethacrylate) (PMMA) cover layers against the degradation of π-conjugated polymers by ozone and photo-oxidation, respectively, has been investigated by UV/Vis spectroscopy. The PMMA films were cast from solution at thicknesses between 20 and 100 nm on top of films of poly(3-hexylthiophene) and poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene]. PMMA layers of more than 65 nm in thickness reduce the oxidation rate of the π-conjugated polymers under 15 ppm of ozone in the dark by more than three orders of magnitude, whereas photo-oxidation rates under dry and humid air remain unaffected. The PMMA cover layers are hardly affected by ambient ozone over thousands of hours. Calculations of ozone and oxygen fluxes through the PMMA films reveal that ozonation rates are limited by the diffusion of ozone, whereas photo-oxidation rates are not limited by the diffusion of oxygen, due to the much larger pressure gradient of the latter.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fraga Domínguez, I., Distler, A., and Lüer, L.: Stability of organic solar cells: The influence of nanostructured carbon materials. Adv. Energy Mater. 7, 1601320 (2017).CrossRefGoogle Scholar
Roesch, R., Faber, T., von Hauff, E., Brown, T.M., Lira-Cantu, M., and Hoppe, H.: Procedures and practices for evaluating thin-film solar cell stability. Adv. Energy Mater. 5, 1501407 (2015).CrossRefGoogle Scholar
Lee, J.U., Jung, J.W., Jo, J.W., and Jo, W.H.: Degradation and stability of polymer-based solar cells. J. Mater. Chem. 22, 24265 (2012).CrossRefGoogle Scholar
Grossiord, N., Kroon, J.M., Andriessen, R., and Blom, P.W.M.: Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432 (2012).CrossRefGoogle Scholar
Jørgensen, M., Norrman, K., Gevorgyan, S.A., Tromholt, T., Andreasen, B., and Krebs, F.C.: Stability of polymer solar cells. Adv. Mater. 24, 580 (2012).CrossRefGoogle ScholarPubMed
Gevorgyan, S.A., Heckler, I.M., Bundgaard, E., Corazza, M., Hösel, M., Søndergaard, R.R., dos Reis Benatto, G.A., Jørgensen, M., and Krebs, F.C.: Improving, characterizing and predicting the lifetime of organic photovoltaics. J. Phys. D Appl. Phys. 50, 103001 (2017).CrossRefGoogle Scholar
Turkovic, V., Engmann, S., Tsierkezos, N., Hoppe, H., Madsen, M., Rubahn, H-G., Ritter, U., and Gobsch, G.: Long-term stabilization of organic solar cells using hydroperoxide decomposers as additives. Appl. Phys. A 122, 255 (2016).CrossRefGoogle Scholar
Turkovic, V., Engmann, S., Tsierkezos, N., Hoppe, H., Ritter, U., and Gobsch, G.: Long-term stabilization of organic solar cells using hindered phenols as additives. ACS Appl. Mater. Interfaces 6, 18525 (2014).CrossRefGoogle ScholarPubMed
Salvador, M., Gasparini, N., Perea, J.D., Paleti, S.H., Distler, A., Inasaridze, L.N., Troshin, P.A., Lüer, L., Egelhaaf, H-J., and Brabec, C.: Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005 (2017).CrossRefGoogle Scholar
Lee, H-J., Kim, H-P., Kim, H-M., Youn, J-H., Nam, D-H., Lee, Y-G., Lee, J-G., bin Mohd Yusoff, A.R., and Jang, J.: Solution processed encapsulation for organic photovoltaics. Sol. Energy Mater. Sol. Cells 111, 97 (2013).CrossRefGoogle Scholar
Ahmad, J., Bazaka, K., Anderson, L.J., White, R.D., and Jacob, M.V.: Materials and methods for encapsulation of OPV: A review. Renew. Sustain. Energy Rev. 27, 104 (2013).CrossRefGoogle Scholar
Giannouli, M., Drakonakis, V.M., Savva, A., Eleftheriou, P., Florides, G., and Choulis, S.A.: Methods for improving the lifetime performance of organic photovoltaics with low-costing encapsulation. ChemPhysChem 16, 1134 (2015).CrossRefGoogle ScholarPubMed
Gaume, J., Taviot-Gueho, C., Cros, S., Rivaton, A., Thérias, S., and Gardette, J-L.: Optimization of PVA clay nanocomposite for ultra-barrier multilayer encapsulation of organic solar cells. Sol. Energy Mater. Sol. Cells 99, 240 (2012).CrossRefGoogle Scholar
Dennler, G., Lungenschmied, C., Neugebauer, H., Sariciftci, N.S., Latrèche, M., Czeremuszkin, G., and Wertheimer, M.R.: A new encapsulation solution for flexible organic solar cells. Thin Solid Films 511–512, 349 (2006).CrossRefGoogle Scholar
Hauch, J.A., Schilinsky, P., Choulis, S.A., Rajoelson, S., and Brabec, C.J.: The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl. Phys. Lett. 93, 103306 (2008).CrossRefGoogle Scholar
Lewis, J.: Material challenge for flexible organic devices. Mater. Today 9, 38 (2006).CrossRefGoogle Scholar
Cros, S., de Bettignies, R., Berson, S., Bailly, S., Maisse, P., Lemaitre, N., and Guillerez, S.: Definition of encapsulation barrier requirements: A method applied to organic solar cells. Sol. Energy Mater. Sol. Cells 95, S65 (2011).CrossRefGoogle Scholar
Hintz, H., Egelhaaf, H.-J., Lüer, L., Hauch, J., Peisert, H., and Chassé, T.: Photodegradation of P3HT–A systematic study of environmental factors. Chem. Mater. 23, 145 (2011).CrossRefGoogle Scholar
Hintz, H., Egelhaaf, H.-J., Peisert, H., and Chassé, T.: Photo-oxidation and ozonization of poly(3-hexylthiophene) thin films as studied by UV/Vis and photoelectron spectroscopy. Polym. Degrad. Stab. 95, 818 (2010).CrossRefGoogle Scholar
Chambon, S., Rivaton, A., Gardette, J.L., and Firon, M.: Photo- and thermal degradation of MDMO-PPV:PCBM blends. Sol. Energy Mater. Sol. Cells 91, 394 (2007).CrossRefGoogle Scholar
Manceau, M., Rivaton, A., Gardette, J-L., Guillerez, S., and Lemaître, N.: The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym. Degrad. Stab. 94, 898 (2009).CrossRefGoogle Scholar
Tournebize, A., Seck, M., Vincze, A., Distler, A., Egelhaaf, H-J., Brabec, C.J., Rivaton, A., Peisert, H., and Chassé, T.: Photodegradation of Si-PCPDTBT:PCBM active layer for organic solar cells applications: A surface and bulk investigation. Sol. Energy Mater. Sol. Cells 155, 323 (2016).CrossRefGoogle Scholar
Cataldo, F. and Omastová, M.: On the ozone degradation of polypyrrole. Polym. Degrad. Stab. 82, 487 (2003).CrossRefGoogle Scholar
Nowaczyk, J., Czerwiński, W., and Olewnik, E.: Ozonization of electronic conducting polymers: II. Degradation or doping. Polym. Degrad. Stab. 91, 2022 (2006).CrossRefGoogle Scholar
Nowaczyk, J., Olszowy, P., Cysewski, P., Nowaczyk, A., and Czerwiński, W.: Ozonization of electronic conducting polymers, Part III: The action of ozone on poly[3-pentylthiophene] film. Polym. Degrad. Stab. 93, 1275 (2008).CrossRefGoogle Scholar
Kang, E.T., Neoh, K.G., Zhang, X., Tan, K.L., and Liaw, D.J.: Surface modification of electroactive polymer films by ozone treatment. Surf. Interface Anal. 24, 51 (1996).3.0.CO;2-9>CrossRefGoogle Scholar
Bailey, P.S.: Ozonation in Organic Chemistry, Vol. I (Academic Press, New York, 1978).Google Scholar
Chabinyc, M.L., Street, R.A., and Northrup, J.E.: Effects of molecular oxygen and ozone on polythiophene-based thin-film transistors. Appl. Phys. Lett. 90, 123508 (2007).CrossRefGoogle Scholar
Heeg, J., Kramer, C., Wolter, M., Michaelis, S., Plieth, W., and Fischer, W-J.: Polythiophene—O3 surface reactions studied by XPS. Appl. Surf. Sci. 180, 36 (2001).CrossRefGoogle Scholar
Sirringhaus, H.: 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 26, 1319 (2014).CrossRefGoogle ScholarPubMed
Britigan, N., Alshawa, A., and Nizkorodov, S.A.: Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. J. Air Waste Manage. Assoc. 56, 601 (2006).CrossRefGoogle ScholarPubMed
Lattimer, R.P., Layer, R.W., and Rhee, C.K.: Chapter 7: Ozone degradation and antiozonants. In Gerard Meurant: Atmospheric Oxidation and Antioxidants, Vol. II, Scott, G. ed. (Elsevier B.V., 1993); pp. 363384.CrossRefGoogle Scholar
Cataldo, F.: The action of ozone on polymers having unconjugated and cross- or linearly conjugated unsaturation: Chemistry and technological aspects. Polym. Degrad. Stab. 73, 511 (2001).CrossRefGoogle Scholar
Layer, R.W. and Lattimer, R.P.: Protection of rubber against ozone. Rubber chemistry and technology. Rubber Chem. Technol. 63, 426 (1990).CrossRefGoogle Scholar
Atkinson, R. and Carter, W.P.L.: Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 84, 437 (1984).CrossRefGoogle Scholar
Criegee, R.: Mechanismus der ozonolyse. Angew. Chem. 87, 765 (1975).CrossRefGoogle Scholar
Erickson, E.R., Berntsen, R.A., Hill, E.L., and Kusy, P.: The reaction of ozone with SBR rubbers. Rubber Chem. Technol. 32, 1062 (1959).CrossRefGoogle Scholar
Strobel, M., Walzak, M.J., Hill, J.M., Lin, A., Karbashewski, E., and Lyons, C.S.: A comparison of gas-phase methods of modifying polymer surfaces. J. Adhes. Sci. Technol. 9, 365 (1995).CrossRefGoogle Scholar
Pankratov, V.A., Yanson, E.F., Prokof'eva, L.V., and Yur'ev, V.Y.: Influence of the fractional composition of physical anti-agers on the ozone and weather resistance of vulcanisates. Int. J. Polym. Sci. Technol. 26, T34 (1999).Google Scholar
Cataldo, F.: On the ozone protection of polymers having non-conjugated unsaturation. Polym. Degrad. Stab. 72, 287 (2001).CrossRefGoogle Scholar
Tokuda, M., Inoue, K., Utsnumomiya, K., and Hitofude, Y.: ACS Meeting Rubber Division (American Chemical Society, Mexico City, 1989).Google Scholar
Choi, S-S.: Migration behaviors of wax to surface in rubber vulcanizates. J. Appl. Polym. Sci. 73, 2587 (1999).3.0.CO;2-G>CrossRefGoogle Scholar
Bruck, D. and Engels, H.: Correlation of the structural elements of p-phenzlene diamine derivatives with their antidegradant activitz. Kautsch. Gummi Kunstst. 44, 1014 (1991).Google Scholar
Glaze, W.H.: Reaction products of ozone: A review. Environ. Health Perspect. 69, 151 (1986).CrossRefGoogle ScholarPubMed
Rakovsky, S. and Zaikov, G.E.: Ozonisation in Organic Chemistry, Nonolefinic Compounds, Vol. 2 (Academy Press, New York, NY, 1982).Google Scholar
Ohm, R.F.: Expandierte polymerkügelchen. Gummi, Fasern, Kunstst. 47, 722 (1994).Google Scholar
Kaduk, B.A. and Toby, S.: The reaction of ozone with thiophene in the gas phase. Int. J. Chem. Kinet. 9, 829 (1977).CrossRefGoogle Scholar
Czerwiñski, W., Nowaczyk, J., and Kania, K.: Ozonization of electronic conducting polymers I. Copolymers based on poly[3-nonylthiophene]. Polym. Degrad. Stab. 80, 93 (2003).CrossRefGoogle Scholar
Bailey, P.S. and Hwang, H.H.: Ozonation of pheny-substituted thiophenes. J. Org. Chem. 50, 1778 (1985).CrossRefGoogle Scholar
Rost, H., Ficker, J., Alonso, J.S., Leenders, L., and McCulloch, I.: Air-stable all-polymer field-effect transistors with organic electrodes. Synth. Met. 145, 83 (2004).CrossRefGoogle Scholar
Zaumseil, J.: P3HT and other polythiophene field-effect transistors. In P3HT Revisited - From Molecular Scale to Solar Cell Devices, Ludwigs, S. ed. (Springer, Heidelberg and Berlin, Germany, 2014); pp. 123124.Google Scholar
Bao, Z., Dodabalapur, A., and Lovinger, A.J.: Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108 (1996).CrossRefGoogle Scholar
Lungenschmied, C., Dennler, G., Neugebauer, H., Sariciftci, S.N., Glatthaar, M., Meyer, T., and Meyer, A.: Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cells 91, 379 (2007).CrossRefGoogle Scholar
Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S., and Denk, P.: Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288 (2002).CrossRefGoogle Scholar
Wienk, M.M., Kroon, J.M., Verhees, W.J.H., Knol, J., Hummelen, J.C., van Hal, P.A., and Janssen, R.A.J.: Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 42, 3371 (2003).CrossRefGoogle Scholar
Brabec, C.J., Gowrisanker, S., Halls, J.J.M., Laird, D., Jia, S.J., and Williams, S.P.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839 (2010).CrossRefGoogle ScholarPubMed
Akers, P.W., Hoai Le, N.C., Nelson, A.R.J., McKenna, M., O’Mahony, C., McGillivray, D.J., Gubala, V., and Williams, D.E.: Surface engineering of poly(methylmethacrylate): Effects on fluorescence immunoassay. Biointerphases 12, 02C415 (2017).CrossRefGoogle ScholarPubMed
Klein, R.J., Fischer, D.A., and Lenhart, J.L.: Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle. Langmuir 24, 8187 (2008).CrossRefGoogle ScholarPubMed
Herrera, G.J. and Whitten, J.E.: Photoemission study of the thermal and photochemical decomposition of a urethane-substituted polythiophene. Synth. Met. 128, 317 (2002).CrossRefGoogle Scholar
Hopkins, J. and Badyal, J.P.S.: XPS and atomic force microscopy of plasma-treated polysulfone. J. Polym. Sci., Part A: Polym. Chem. 348, 1385 (1996).3.0.CO;2-#>CrossRefGoogle Scholar
Fujimoto, K., Takebayashi, Y., Inoue, H., and Ikada, Y.: Ozone induced graft polymerization onto polymer surface. J. Polym. Sci., Part A: Polym. Chem. 31, 1035 (1993).CrossRefGoogle Scholar
Ponter, A.B., Jones, W.R., and Jansen, R.H.: Surface energy changes produced by ultraviolet-ozone irradiation of poly(methylmethacrylate), polycarbonate and polytetrafluoroethylene. In NASA Technical Memorandum 106460 (Luisiana, 1994). Avalible at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940024419.pdf.Google Scholar
Nie, H-Y., Walzak, M.J., and Mcintyre, N.S.: Atomic force microscopy study of biaxially oriented polypropylene films. J. Mater. Eng. Perform. 13, 451 (2004).CrossRefGoogle Scholar
Teare, D.O.H., Ton-That, C., and Bradley, R.H.: Surface characterization and ageing of ultraviolet-ozone-treated polymers using atomic force microscopy and X-ray photoelectron spectroscopy. Surf. Interface Anal. 29, 276 (2000).3.0.CO;2-P>CrossRefGoogle Scholar
Wang, T., Dunbar, A.D.F., Staniec, P.A., Pearson, A.J., Hopkinson, P.E., MacDonald, J.E., Lilliu, S., Pizzey, C., Terrill, N.J., Donald, A.M., Ryan, A.J., Jones, R.A.L., and Lidzey, D.G.: The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 6, 4128 (2010).CrossRefGoogle Scholar
Matteucci, S., Yampolskii, Y., Freeman, B.D., and Pinnau, I.: Materials Science of Membranes for Gas and Vapor Separation (John Wiley & Sons, Ltd, Chichester, U.K., 2006); pp. 147.Google Scholar
Minelli, M. and Sarti, G.C.: Elementary prediction of gas permeability in glassy polymers. J. Membr. Sci. 521, 73 (2017).CrossRefGoogle Scholar
Biń, A.K.: Ozone solubility in liquids. Ozone Sci. Eng. 28, 67 (2006).CrossRefGoogle Scholar
Biń, A.K.: Prediction of oxygen and ozone solubility in liquids with the peng-robinson equation of state. Ozone Sci. Eng. 30, 13 (2008).CrossRefGoogle Scholar
Min, K.E. and Paul, D.R.: Effect of tacticity on permeation properties of poly(methyl methacrylate). J. Polym. Sci., Part B: Polym. Phys. 26, 1021 (1988).CrossRefGoogle Scholar
Chiou, J.S. and Paul, D.R.: Sorption and transport of inert gases in PVF2/PMMA blends. J. Appl. Polym. Sci. 32, 4793 (1986).CrossRefGoogle Scholar
Thermo Scientific: 2011 624 (2011).Google Scholar
Mateker, W.R., Heumueller, T., Cheacharoen, R., Sachs-Quintana, I.T., McGehee, M.D., Warnan, J., Beaujuge, P.M., Liu, X., and Bazan, G.C.: Molecular packing and arrangement govern the photo-oxidative stability of organic photovoltaic materials. Chem. Mater. 27, 6345 (2015).CrossRefGoogle Scholar
Subrahmanyam, C., Bulushev, D.A., and Kiwi-Minsker, L.: Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature. Appl. Catal. B Environ. 61, 98 (2005).CrossRefGoogle Scholar
Itoh, H., Isegame, S., Miura, H., Suzuki, S., and Rusinov, I.M.: Surface loss rate of ozone in a cylindrical tube. Ozone Sci. Eng. 33, 106 (2011).CrossRefGoogle Scholar
Supplementary material: File

Früh et al. supplementary material

Früh et al. supplementary material 1

Download Früh et al. supplementary material(File)
File 1.3 MB