Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T16:31:38.805Z Has data issue: false hasContentIssue false

Photoluminescence behavior of Al3+, Pr3+ doped perovskite La2/3TiO3 and pyrochlore La2Ti2O7

Published online by Cambridge University Press:  31 January 2011

J. K. Park
Affiliation:
Advanced Materials Division, Korea Research Institute of Chemical Technology, Taejon 305–600, Korea
C. H. Kim
Affiliation:
Advanced Materials Division, Korea Research Institute of Chemical Technology, Taejon 305–600, Korea
K. J. Choi
Affiliation:
Advanced Materials Division, Korea Research Institute of Chemical Technology, Taejon 305–600, Korea
H. D. Park
Affiliation:
Advanced Materials Division, Korea Research Institute of Chemical Technology, Taejon 305–600, Korea
S. Y. Choi
Affiliation:
Department of Ceramic Engineering, Yonsei University, Seoul 120–749, Korea
Get access

Abstract

The purpose of this study is to develop an understanding of the photoluminescence properties of Al3+, Pr3+ doped perovskite-type La2/3TiO3 and pyrochlore-type La2Ti2O7 phosphor, which is characterized by the red emission (1D23H4 transition) of the Pr3+ ion. The explanation for the energy transfer and the corresponding critical distance is proposed on the basis of the role of Al3+ ions in the perovskite-type La2/3TiO3:Pr phosphor. To clarify the distinction of photoluminescence properties between the perovskite-type La2/3TiO3 and the pyrochlore-type La2Ti2O7, the trap-involved process and the charge transfer band have been investigated, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Rez, I.S., in Collected Papers on the Properties of Material Used in Optico-Electronic Devices, Izd. Sibis, Otd. Akad. Nauk USSR 10 (1975).Google Scholar
2Leonov, A.I., Piryutko, M.M., and Keler, E.K., Bull. Acad. Sci. USSR 5, 756 (1966).CrossRefGoogle Scholar
3Abe, M. and Uchino, K., Mater. Res. Bull. 9, 147 (1974).CrossRefGoogle Scholar
4Campt, G., Jakani, M., Doumerc, J.P., Claverie, J., and Hagenmuller, P., Solid State Commun. 42, 93 (1982).CrossRefGoogle Scholar
5Blasse, G., Philips Res. Rep. 24, 131 (1969).Google Scholar
6Carnall, W.T., Fields, P.R., and Rajnak, K., J. Chem. Phys. 49, 4412 (1968).CrossRefGoogle Scholar
7Chang, I.F. and Sai-Halasz, G.A., J. Electrochem. Soc. 127, 2458 (1980).CrossRefGoogle Scholar
8Avouris, Ph., Chang, I.F., Dove, D., Morgan, T.N., and Thefaine, Y., J. Electron. Mater. 10, 887 (1981).CrossRefGoogle Scholar
9Chang, I.F. and Thioulouse, P., J. Appl. Phys. 53, 5873 (1982).CrossRefGoogle Scholar
10Robbins, D.J., Casewell, N.S., Avouris, Ph., Giess, E.A., Chang, I.F., and Dove, D.B., J. Electrochem. Soc. 132, 2784 (1985).CrossRefGoogle Scholar
11Campt, G., Claverie, J., and Salvador, P., J. Phys. Chem. Solids 44, 925 (1983).CrossRefGoogle Scholar
12Bouchard, R.J. and Gillson, J.L., Mater. Res. Bull. 6, 669 (1971).CrossRefGoogle Scholar
13Blasse, G., Radiationless Processes in Luminescent Materials (Plenum Press, New York, 1980), p. 287.CrossRefGoogle Scholar
14Kuleshov, N.V., Shcherbitsky, V.G., Lagatsky, A.A., Mikhailov, V.P., Minkov, B.I., Danger, T., Sandrock, T., and Huber, G., J. Lumin. 71, 27 (1997).CrossRefGoogle Scholar
15Okumura, M., Tamatani, M., Albessard, A.K., and Matosuda, N., Jpn. J. Appl. Phys. 36, 6411 (1977).CrossRefGoogle Scholar
16Leverenz, H.W., An Introduction to Luminescence of Solids (Dover, New York, 1968), p. 336.Google Scholar