Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T10:10:14.366Z Has data issue: false hasContentIssue false

Optical and structural properties of solid oxide photocatalyst Bi2FeNbO7

Published online by Cambridge University Press:  31 January 2011

Zhigang Zou*
Affiliation:
National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan
Jinhua Ye
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305, Japan
Hironori Arakawa
Affiliation:
National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Polycrystalline sample of Bi2FeNbO7 was synthesized by the solid-state reaction and characterized by powder x-ray diffraction and Rietveld structure refinement. The optical absorption and structural properties of Bi2FeNbO7 were investigated. It was found that the Bi2FeNbO7 compound has the pyrochlore crystal structure, cubic system with space group Fd3m, and the lattice parameter is a = 10.5233(2) Å. Ultraviolet-visible diffuse reflectance spectroscopy measurement revealed that the band gap of Bi2FeNbO7 is about 2.1(6) eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tomoji, K. and Tadayoshi, S., Nature 286, 474 (1980).Google Scholar
2.Geoffrey, B.S. and Thomas, E.M., J. Phys. Chem. B. 101, 2508 (1997).Google Scholar
3.Sayama, K., Yase, K., Arakawa, H., Asakura, K., Tanaka, K., Domen, K., and Onishi, J., Photochem, J.. Photobiol. A 114, 125 (1998).CrossRefGoogle Scholar
4.Honda, K. and Fujishima, A., Nature 238, 37 (1972).Google Scholar
5.Zou, Z., Ye, J., and Arakawa, H. (unpublished).Google Scholar
6.Bernard, D., Pannetier, J., and Lucas, J., Ferroelectrics 21, 429 (1978).CrossRefGoogle Scholar
7.Golovshchikove, G.I., Isupov, V.A., Tutov, A.G., Nikove, A.G., Myl, I.E., Nikitina, P.A., and Tulinova, O.I., Sov. Phys. Solid State 14, 2539 (1973).Google Scholar
8.Zou, Z., Ye, J., Oka, K., and Nishihara, Y., Phys. Rev. Lett. 80, 1074 (1998).CrossRefGoogle Scholar
9.Izumi, F., J. Crystallogr. Assoc. Jpn. 27, 23 (1985).CrossRefGoogle Scholar
10.Zou, Z., Ye, J., and Arakawa, H., J. Mater. Res. 15, 2073 (2000).CrossRefGoogle Scholar
11.Scaife, D.E., Solar Energy 25, 41 (1980).CrossRefGoogle Scholar
12.Qadri, S.B., Kim, H., and Khan, H.R., J. Mater. Res. 15, 21 (2000).CrossRefGoogle Scholar
13.Xu, J. and Greenblatt, M., J. Solid State Chem. 121, 273 (1996).CrossRefGoogle Scholar
14.Xu, J., Emge, T., Ramanujachary, K.V., Hohn, P., and Greenblatt, M., J. Solid State Chem. 125, 192 (1996).CrossRefGoogle Scholar
15.Alig, R.C., Bloom, S., and Struck, C.W., Phys. Rev. B 22, 5565 (1980).CrossRefGoogle Scholar