Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T20:17:57.400Z Has data issue: false hasContentIssue false

A note on a common mistake in the analysis of nanoindentation data

Published online by Cambridge University Press:  31 January 2011

M. Munawar Chaudhri
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, United Kingdom
Get access

Abstract

It is shown that to analyze the load versus displacement data obtained from a nanoindentation experiment on a flat surface, it is incorrect to use the so called “reduced modulus,” which includes the elastic properties of both the indenter and the test solid. It is suggested that, until correct analytical solutions become available, the indenter should always be of a much stiffer material than the test solid and it should be approximated to a rigid indenter in the analysis. Furthermore, when the indenter and the test surface are of comparable elastic moduli, the measured indenter displacement is the distance of mutual approach of the two contacting bodies rather than the penetration of the indenter below the original surface of the test solid.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Alekhin, V.P., Berlin, G.S., Isaev, A.V., Kalei, G.N., Merkulov, V.A., Skvortsov, V.N., Temovskii, A.P., Krushchov, M.M., Shnyrev, G.D., and Shorshorov, M.Kh., Ind. Lab. 38, 619 (1972).Google Scholar
2.Bulychev, S.I., Alekhin, V.P., Shorshorov, M.Kh., Ternovskii, A.P., and Shnyrev, G.D., Ind. Lab. 41, 1409 (1975).Google Scholar
3.Galanov, B.A., Grigor’ev, O.N., Mil’man, Yu. V., and Ragozin, I.P., Ind. Lab. 11, 93 (1983).Google Scholar
4.Loubet, J.L., Georges, J.M., Marchesini, O., and Meille, G., J. Tribology 106, 43 (1984).CrossRefGoogle Scholar
5.Loubet, J.L., Georges, J.M., and Meille, G., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P.J. and Lawn, B.R., ASTM Spec. Tech. Publ. 889 (ASTM, Philadelphia, PA, 1986), p. 72.Google Scholar
6.Doemer, M.F. and Nix, N.D., J. Mater. Res. 1, 601 (1986).Google Scholar
7.Doerner, M.F., Gardner, D.S., and Nix, W.D.. J. Mater. Res. 1, 845 (1986).CrossRefGoogle Scholar
8.Ross, J.D., Pollock, H.M., Pivin, J.C., and Takadonm, J., Thin Solid Films 148, 171 (1987).CrossRefGoogle Scholar
9.Wu, T.W., Moshref, M., and Alexopoulos, P.S., Thin Solid Films 187, 295 (1990).CrossRefGoogle Scholar
10.Swain, M.V. and Mencik, J., Thin Solid Films 253, 204 (1994).CrossRefGoogle Scholar
11.Tsui, T.Y., Vlassak, J., and Nix, W.D., J. Mater. Res. 14, 2196 (1999).CrossRefGoogle Scholar
12.Gerberich, W.W., Strojny, A., Yoder, K., and Cheng, L-S., J. Mater. Res. 14, 2210 (1999).CrossRefGoogle Scholar
13.Lim, Y.Y., Chaudhri, M.M., and Enomoto, Y., J. Mater. Res. 14, 2314 (1999).CrossRefGoogle Scholar
14.Lim, Y.Y. and Chaudhri, M.M., Philos. Mag. A 79, 2979 (1999).CrossRefGoogle Scholar
15.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
16.Sneddon, L.N., Int. J. Engng Sci. 3, 47 (1965).CrossRefGoogle Scholar
17.Yoffe, E.H., Philos. Mag. A 50, 813 (1984).CrossRefGoogle Scholar
18.Timoshenko, S.P. and Goodier, J.N., in Theory of Elasticity, 3rd ed. (McGray-Hill, New York, 1970) p. 412.Google Scholar
19.Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A., and Swain, M.V., J. Mater. Res. 14, 2338 (1999).CrossRefGoogle Scholar
20.Page, T.F., Oliver, W.C., and McHargue, C., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar