Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T01:37:10.208Z Has data issue: false hasContentIssue false

New insights on the basicity of ZnAl–Zr hydrotalcites activated at low temperature and their application in transesterification of soybean oil

Published online by Cambridge University Press:  07 September 2018

Denis A. Cabrera-Munguía
Affiliation:
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, México
Horacio González*
Affiliation:
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, México
Francisco Tzompantzi
Affiliation:
Departamento de Química, Facultad de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, México
Aída Gutiérrez-Alejandre
Affiliation:
UNICAT, Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
Dora A. Solís-Casados
Affiliation:
Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Toluca 50200, México
José L. Rico
Affiliation:
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, México
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

ZnAl–Zr(X) hydrotalcite-like materials were synthesized by co-precipitation using a Zn/Al molar ratio of 2 and Zr/Al(X) molar ratios of 0.0, 0.10, and 0.25. The effect of the activation temperature on the catalytic performance of these materials was analyzed, revealing that at relatively low temperature (200 °C), the collapse of the material structure is diminished, leading to FAME yields varying from 68 to 82%. This remarkable catalytic activity is related to the formation of hydrotalcite, zincite, and hydrozincite which in turn lead to the generation of Brönsted basic sites and Lewis acid–basic pairs. Incorporation of Zr+4 into the brucite-like structure of hydrotalcites enhances the basicity of ZnAl–Zr(X) catalysts, which correlates well with the increase in catalytic activity observed for these catalysts. The stability of the ZnAl–Zr(0.25) catalyst was further studied, showing insignificant deactivation after five subsequent reaction cycles. A simplified reaction scheme was proposed for the transesterification reaction over these materials.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Datta, A. and Mandal, B.K.: A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renewable Sustainable Energy Rev. 57, 799 (2016).CrossRefGoogle Scholar
Thangaraja, J., Anand, K., and Mehta, P.S.: Biodiesel NOx penalty and control measures—A review. Renewable Sustainable Energy Rev. 61, 1 (2016).CrossRefGoogle Scholar
Tariq, M., Ali, S., and Khalid, N.: Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review. Renewable Sustainable Energy Rev. 16, 6303 (2012).CrossRefGoogle Scholar
Sharma, Y.C., Singh, B., and Korstad, J.: Latest developments on application of heterogeneous basic catalysts for an efficient and eco-friendly synthesis of biodiesel: A review. Fuel 90, 1309 (2011).CrossRefGoogle Scholar
Sasidharan, M. and Kumar, R.: Transesterification over various zeolites under liquid-phase conditions. J. Mol. Catal. A: Chem. 210, 93 (2004).CrossRefGoogle Scholar
Ramos, M.J., Casas, A., Rodríguez, L., Romero, R., and Pérez, A.: Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies. Appl. Catal., A 346, 79 (2008).CrossRefGoogle Scholar
Martínez, S.L., Romero, R., López, J.C., Romero, A., Sánchez Mendieta, V., and Natividad, R.: Preparation and characterization of CaO nanoparticles/NaX zeolite catalysts for the transesterification of sunflower oil. Ind. Eng. Chem. Res. 50, 2665 (2011).CrossRefGoogle Scholar
Dossin, T.F., Reyniers, M-F., and Marin, G.B.: Kinetics of heterogeneously MgO-catalyzed transesterification. Appl. Catal., B 61, 35 (2006).CrossRefGoogle Scholar
Liu, X., He, H., Wang, Y., Zhu, S., and Piao, X.: Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87, 216 (2008).CrossRefGoogle Scholar
Galadima, A. and Muraza, O.: Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy 78, 72 (2014).CrossRefGoogle Scholar
Sun, H., Ding, Y., Duan, J., Zhang, Q., Wang, Z., Lou, H., and Zheng, X.: Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresour. Technol. 101, 953 (2010).CrossRefGoogle ScholarPubMed
Madhuvilakku, R. and Piraman, S.: Biodiesel synthesis by TiO2–ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour. Technol. 150, 55 (2013).CrossRefGoogle ScholarPubMed
Hernández-Hipólito, P., García-Castillejos, M., Martínez-Klimova, E., Juárez-Flores, N., Gómez-Cortés, A., and Klimova, T.: Biodiesel production with nanotubular sodium titanate as a catalysts. Catal. Today 220–222, 4 (2014).CrossRefGoogle Scholar
Liu, Y., Lotero, E., Goodwin, J.G. Jr., and Mo, X.: Transesterification of poultry fat with methanol using Mg–Al hydrotalcite derived catalysts. Appl. Catal., A 331, 138 (2007).CrossRefGoogle Scholar
Zeng, H-Y., Liao, K-B., Deng, X., Jiang, H., and Zhang, F.: Characterization of the lipase immobilized on Mg–Al hydrotalcite for biodiesel. Process Biochem. 444, 791 (2009).CrossRefGoogle Scholar
Sun, C., Qiu, F., Yang, D., and Ye, B.: Preparation of biodiesel from soybean oil catalyzed by Al–Ca hydrotalcite loaded with K2CO3 as heterogeneous solid base catalyst. Fuel Process. Technol. 126, 383 (2014).CrossRefGoogle Scholar
Nowicki, J., Lach, J., Organek, M., and Sabura, E.: Transesterification of rapeseed oil to biodiesel over Zr-dopped MgAl hydrotalcites. Appl. Catal., A 524, 17 (2016).CrossRefGoogle Scholar
Jiang, W., Lu, H.F., Qi, T., Yan, S.L., and Liang, B.: Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditions. Biotechnol. Adv. 28, 620 (2010).CrossRefGoogle ScholarPubMed
Tzompantzi, F., Carrera, Y., Morales-Mendoza, G., Valverde-Aguilar, G., and Mantilla, A.: ZnO–Al2O3–La2O3 layered double hydroxides as catalyst precursors for the esterification of oleic acid fatty grass at low temperature. Catal. Today 212, 164 (2013).CrossRefGoogle Scholar
Soares Dias, A.P., Bernardo, J., Felizardo, P., and Neiva Correia, M.J.: Biodiesel production over thermal activated cerium modified Mg–Al hydrotalcites. Energy 41, 344 (2012).CrossRefGoogle Scholar
Liu, Q., Wang, C., Qu, W., Wang, B., Tian, Z., Ma, H., and Xu, R.: The application of Zr incorporated Zn–Al dehydrated hydrotalcites as solid base in transesterification. Catal. Today 234, 161 (2014).CrossRefGoogle Scholar
Cavani, F., Trifiró, F., and Vaccari, A.: Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 11, 173 (1991).CrossRefGoogle Scholar
Cabrera-Munguia, D.A., Tzompantzi, F., Gutiérrez-Alejandre, A., Rico, J.L., and González, H.: ZnAl–Zr hydrotalcite-like compounds activated at low temperature as solid base catalyst for the transesterification of vegetable oils. Energy Procedia 142, 582 (2017).CrossRefGoogle Scholar
Fraile, J.M., García, N., Mayoral, J.A., Pires, E., and Roldán, L.: The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions. Appl. Catal., A 387, 67 (2010).CrossRefGoogle Scholar
Cabrera-Munguía, D.A., González, H., Gutiérrez-Alejandre, A., Rico, J.L., Huirache-Acuña, R., Maya-Yescas, R., and del Río, R.E.: Heterogeneous acid conversion of a tricaprylin-palmitic acid mixture over Al-SBA-15 catalysts: Reaction study for biodiesel synthesis. Catal. Today 282, 195 (2017).CrossRefGoogle Scholar
Velu, S., Sabde, D.P., Shah, N., and Sivasanker, S.: New hydrotalcite-like anionic clays containing Zr4+ in the layers: Synthesis and physicochemical properties. Chem. Mater. 10, 3451 (1998).CrossRefGoogle Scholar
Tichit, D., Das, N., Coq, B., and Durand, R.: Preparation of Zr-containing layered double hydroxides and characterization of the acid-basic properties of their mixed oxides. Chem. Mater. 14, 1530 (2002).CrossRefGoogle Scholar
Koilraj, P. and Kannan, S.: Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation. J. Colloid Interface Sci. 341, 289 (2010).CrossRefGoogle ScholarPubMed
Das, N.N., Konar, J., Mohanta, M.K., and Srivastava, S.C.: Adsorption of Cr(VI) and Se(IV) from their aqueos solutions onto Zr4+-substituted ZnAl/MgAl-layered double hydroxides: Effect of Zr4+ substitution in the layer. J. Colloid Interface Sci. 270, 1 (2004).CrossRefGoogle Scholar
Seftel, E.M., Popovici, E., Mertens, M., De Witte, K., Van Tendeloo, G., Cool, P., and Vansant, E.F.: Zn–Al layered double hydroxides: Synthesis, characterization and photocatalytic application. Microporous Mesoporous Mater. 113, 296 (2008).CrossRefGoogle Scholar
Valente, J.S., Pfeiffer, H., Lima, E., Prince, J., and Flores, J.: Cyanoethylation of alcohols by activated Mg–Al layered double hydroxides: Influence of rehydration conditions and Mg/Al molar ratio on Brönsted basicity. J. Catal. 279, 196 (2011).CrossRefGoogle Scholar
Álvarez, M.G., Chimentᾶo, R.J., Barrabés, N., Föttinger, K., Gispert-Guirado, F., Kleymenov, E., Tichit, D., and Medina, F.: Structure evolution of layered double hydroxides by ultrasound induced reconstruction. Appl. Clay Sci. 83–84, 1 (2013).CrossRefGoogle Scholar
Wu, D., Wang, W., Tan, F., Sun, F., Lu, H., and Qiao, X.: Fabrication of pit-structures ZnO nanorods and their enhanced photocatalytic performance. RSC Adv. 3, 20054 (2013).CrossRefGoogle Scholar
López, T., Ramos, E., Bosch, P., Asomoza, M., and Gómez, R.: DTA and TGA characterization of sol–gel hydrotalcites. Mater. Lett. 30, 279 (1997).CrossRefGoogle Scholar
Vaysse, C., Guerlou-Demorgues, L., and Delmas, C.: Thermal evolution of carbonate pillared layered hydroxides with (Ni, L)(L = Fe, Co) base slabs: Grafting or non grafting of carbonate anions? Inorg. Chem. 41, 6905 (2001).CrossRefGoogle Scholar
Veiga, P.M., Luna, A.S., Portilho, M.F., Veloso, C.O., and Henriques, C.A.: Zn, Al-catalysts for heterogeneous biodiesel production: Basicity and process optimization. Energy 75, 453 (2014).CrossRefGoogle Scholar
Liu, Q., Wang, C., Qu, W., Wang, B., Tian, Z., Ma, H., and Xu, R.: Basicities and transesterification activities of Zn–Al hydrotalcites-derived solid bases. Green Chem. 16, 2604 (2014).CrossRefGoogle Scholar
Busca, G., Rossi, P.F., Lorenzelli, V., Benaissa, V., Travert, J., and Lavalley, J.C.: Microcalorimetric and Fourier transform infrared spectroscopic studies of methanol adsorption on alumina. J. Phys. Chem. 89, 5433 (1985).CrossRefGoogle Scholar
Riva, A., Trifiro, F., Vaccari, A., Mintchev, L., and Busca, G.: Structure and reactivity of zinc–chromium mixed oxides. Part 2: Study of the surface reactivity by temperature-programmed desorption of methanol. J. Chem. Soc., Faraday Trans. 84, 1423 (1988).CrossRefGoogle Scholar
Chauvin, C., Saussey, J., Lavalley, J.C., Idriss, H., Hindermann, J.P., Kiennemann, A., Chaumette, P., and Courty, P.: Combined infrared spectroscopy, chemical trapping, and thermos programmed desorption studies of methanol and decomposition on ZnAl2O4 and Cu/ZnAl2O4. J. Catal. 121, 56 (1990).CrossRefGoogle Scholar
Montanari, T., Sisani, M., Nocchetti, M., Vivani, R., Herrera-Delgado, M.C., Ramis, G., Busca, G., and Constantino, U.: Zinc–aluminum hydrotalcites as precursors of basic catalysts: Preparation, characterization and study of the activation of methanol. Catal. Today 152, 104 (2010).CrossRefGoogle Scholar
Velu, S., Ramkumar, V., Narayanan, A., and Swamy, C.S.: Effect of interlayer anions on the physicochemical properties of zinc–aluminum hydrotalcite-like compunds. J. Mater. Sci. 32, 957 (1997).CrossRefGoogle Scholar
Chen, F.R., Davis, J.G., and Fripiat, J.J.: Aluminum coordination and lewis acidity in transition aluminas. J. Catal. 133, 263 (1992).CrossRefGoogle Scholar
Coster, D. and Fripiat, J.J.: Memory effects in gel-solid transformations: Coordinately unsaturated Al sites in nanosized aluminas. Chem. Mater. 5, 1204 (1993).CrossRefGoogle Scholar
Wang, J.A., Bokhimi, X., Novaro, O., López, T., Tzompantzi, F., Gómez, R., Navarrete, J., Llanos, M.E., and López-Salinas, M.E.: Effects of structural defects and acid-basic properties on the activity and selectivity of isopropanol decomposition on nanocrystallite sol–gel alumina catalyst. J. Mol. Catal. A: Chem. 137, 239 (1999).CrossRefGoogle Scholar
Vohs, J.M. and Barteau, M.A.: Photoelectron spectroscopy of diethylzinc on the polar surfaces of zinc oxide. J. Electron Spectrosc. Relat. Phenom. 49, 87 (1989).CrossRefGoogle Scholar
Stoyanov, P., Akhtert, S., and White, J.M.: XPS study of metal/polymer interaction: Evaporated aluminum on polyvinyl alcohol. Surf. Interface Anal. 15, 509 (1990).CrossRefGoogle Scholar
Sanna, R., Medas, D., Poddda, F., Meneghini, C., Casu, M., Lattanzi, P., Scorciapino, M.A., Floris, C., Cannas, C., and de Giudici, G.: Binding of bis-(2-ethylhexyl) phthalate at the surface of hydrozincite nanocrystals: An example of organic molecules absorption onto nanocrystalline minerals. J. Colloid Interface Sci. 457, 298 (2015).CrossRefGoogle ScholarPubMed
Dermibas, A.: Biodiesel: A Realistic Fuel Alternative for Diesel Engines (Springer, London, 2008).Google Scholar
Supplementary material: File

Cabrera-Munguía et al. supplementary material

Tables S1 and Figures S1-S3

Download Cabrera-Munguía et al. supplementary material(File)
File 519.7 KB