Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T22:48:05.272Z Has data issue: false hasContentIssue false

Nanostructured resorcinol-formaldehyde ink for 3D direct writing

Published online by Cambridge University Press:  11 May 2018

Yingting Ge
Affiliation:
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Ting Zhang
Affiliation:
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Bin Zhou*
Affiliation:
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Hongqiang Wang
Affiliation:
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Zhihua Zhang
Affiliation:
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Jun Shen
Affiliation:
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Ai Du*
Affiliation:
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We designed a resorcinol-formaldehyde (RF) sol–gel ink for direct ink writing of the microlattices. To improve the formability, the fresh microlattices were strengthened by surface catalysis with HCl atmosphere. After supercritical drying and carbonization, the sample’s specific surface area was 631 m2/g and the average pore size was 3.81 nm. Both RF aerogel and carbonized RF aerogel samples had millimeter-scale pore, micron-scale pore, and nanoscale skeleton. The pore and skeleton could provide high surface area and diffusion channels, which were beneficial to the adsorption performances. The carbonized RF aerogel sample fully adsorbed Dulbecco’s modified eagle medium in 250 min, which exhibited a good capacity of quick adsorption and indicated the potential application for cell supports.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhu, C., Han, T.Y-J., Duoss, E.B., Golobic, A.M., Kuntz, J.D., Spadaccini, C.M., and Worsely, M.A.: Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2014).CrossRefGoogle Scholar
Compton, B.G. and Lewis, J.A.: 3D printing of lightweight cellular composites. Adv. Mater. 26, 5930 (2014).CrossRefGoogle ScholarPubMed
Bary, R.A. III, Shephers, R.F., Hanson, J.N., Nuzzo, R.G., Wiltzius, P., and Lewis, J.A.: Direct write assembly of 3D hydrogel scaffolds for guided cell growth. Adv. Mater., 21, 2407 (2010).CrossRefGoogle Scholar
Wu, W., DeConinck, A., and Lewis, J.A.: Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, 178 (2011).CrossRefGoogle ScholarPubMed
Lewicki, J.P., Rodriguez, J.N., Zhu, C., Worsley, M.A., Wu, A.S., Kanarska, Y., Hprn, J.D., Duoss, E.B., Ortega, J.M., Elmer, W., Hensleigh, R., Fellini, R.A., and King, M.J.: 3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties. Sci. Rep. 7, 43401 (2017).CrossRefGoogle ScholarPubMed
Shepherd, J.N.H., Parker, S.T., Shepherd, R.F., Gillette, M.U., Lewis, J.A., and Nuzzo, R.G.: 3D microperiodic hydrogel caffolds for robust neuronal cultures. Adv. Funct. Mater. 21, 47 (2011).CrossRefGoogle Scholar
Gratson, M. and Lewis, J.A.: Phase behavior and rheological properties of polyelectrolyte inks for direct-write assembly. Langmuir 21, 457 (2005).CrossRefGoogle ScholarPubMed
Vorndran, E., Klammert, U., Ewald, A., Barralet, J.E., and Gbureck, U.: Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug release matrices. Adv. Funct. Mater. 20, 1585 (2010).CrossRefGoogle Scholar
Smay, J.E., Gratson, G.M., Shepherd, R.F., Cesarano, J., and Lewis, J.A.: Directed colloidal assembly of 3D periodic structures. Adv. Mater. 14, 1279 (2002).3.0.CO;2-A>CrossRefGoogle Scholar
Sweeney, M., Campbell, L.L., Hanson, J., Pantoyo, M.L., and Christopher, G.F.: Characterizing the feasibility of processing wet granular materials to improve rheology for 3D printing. J. Mater. Sci. 4, 1 (2017).Google Scholar
McCracken, J.M., Badea, A., Kandel, M.E., Gladman, A.S., Wetzel, D.J., Popescu, G., Lewis, J.A., and Nuzzo, R.G.: Programming mechanical and physicochemical properties of 3D hydrogel cellular microcultures via direct ink writing. Adv. Healthcare Mater. 5, 1025 (2016).CrossRefGoogle ScholarPubMed
Therriault, D., Shepherd, R., White, S., and Lewis, J.A.: Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Adv. Mater. 17, 395 (2005).CrossRefGoogle Scholar
Zhang, H., Ramm, A., Lim, S., Xie, W., Ahn, B.Y., Xu, W., Mahajan, A., Suszynski, W.J., Kim, C., Lewis, J.A., Frisble, C.D., and Francis, L.F.: Wettability contrast gravure printing. Adv. Mater. 27, 7420 (2015).CrossRefGoogle ScholarPubMed
Melcher, R., Travitzky, N., Zollfrank, C., and Greil, P.: 3D printing of Al2O3/Cu–O interpenetrating phase composite. J. Mater. Sci. 46, 1203 (2011).CrossRefGoogle Scholar
Walker, S. and Lewis, A.: Reactive silver inks for patterning high-conductivity features at mild temperatures. J. Am. Chem. Soc. 134, 1419 (2012).CrossRefGoogle ScholarPubMed
Kim, C.H.J., Zhao, D., Lee, G., and Liu, J.: Strong, machinable carbon aerogels for high performance supercapacitors. Adv. Funct. Mater. 26, 4976 (2016).CrossRefGoogle Scholar
Wu, X., Du, D., Fu, R., and Zeng, W.: Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal. Dyes Pigments 95, 689 (2012).CrossRefGoogle Scholar
Zhu, C., Liu, T., Qian, F., Han, T.Y., Duoss, E.B., Kuntz, J.D., Spadaccini, C.M., Worsley, M.A., and Li, Y.: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448 (2016).CrossRefGoogle ScholarPubMed
Rodriguez, J.N., Zhu, C., Duoss, E.B., Wilson, T.S., Spadaccini, C.M., and Lewicki, J.P.: Shape-morphing composites with designed micro-architectures. Sci. Rep. 6, 27933 (2016).CrossRefGoogle ScholarPubMed
Jakus, A.E., Secor, E.B., Rutz, A.L., Jordan, S.W., Hersam, M.C., and Shah, R.N.: Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9, 4636 (2015).CrossRefGoogle ScholarPubMed
Liao, S.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189 (2003).CrossRefGoogle Scholar
Wang, Y., Li, M., Lu, W., Gu, Y., Wang, S., Sun, R., Zhang, X., Li, Q., and Zhang, Z.: Bio-inspired design and fabrication of an ultralight and strong nano-carbon gradient composite. Mater. Des. 107, 198 (2016).CrossRefGoogle Scholar
Dong, D., Guo, H., Li, G., Yan, L., Zhang, X., and Song, W.: Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells. Nano Energy 39, 470 (2017).CrossRefGoogle Scholar
Shao, L., Quan, S., Liu, Y., Guo, Z., and Wang, Z.: A novel “gel–sol” strategy to synthesize TiO2, nanorod combining reduced graphene oxide composites. Mater. Lett. 107, 307 (2013).CrossRefGoogle Scholar
Zhang, X., Alloul, O., He, Q., Zhu, J., Verde, M.J., Li, Y., Wei, S., and Guo, Z.: Strengthened magnetic epoxy nanocomposites with protruding nanoparticles onthe graphene nanosheets. Polymer 54, 3594 (2013).CrossRefGoogle Scholar
Guo, D., Cai, P., Sun, J., He, W., Wu, X., Zhang, T., Wang, X., and Zhang, X.: Reduced-graphene-oxide/metal-oxide p–n heterojunction aerogels as efficient 3D sensing frameworks for phenol detection. Carbon 99, 571 (2015).CrossRefGoogle Scholar
Morisette, S.L., Cesarano, J. III, Lewis, J.A., and Dimos, D.B.: Solid freeform fabrication using chemically reactive suspensions. U.S. Patent No. US6454972, 2002.Google Scholar
Bellec, M., Royon, A., Bousquet, B., Bourhis, K., Treguer, M., Cardinal, T., Richardson, M., and Canioni, L.: Beat the diffraction limit in 3D direct laser writing in photosensitive glass. Opt. Express 17, 10304 (2009).CrossRefGoogle ScholarPubMed
Liu, W., Haubold, D., Rutkowski, B., Oschatz, M., Hübner, R., Werheid, M., Ziegler, C., Sonntag, L., Liu, S., Zheng, Z., Herrmann, A., Geiger, D., Terlan, B., Gemming, T., Borchardt, L., Kaskel, S., Czyrska-Filemonowicz, A., and Eychmüller, A.: Self-supporting hierarchical porous PtAg alloy nanotubular, aero-gels as highly active and durable electrocatalysts. Chem. Mater. 18, 6477 (2016).CrossRefGoogle Scholar
Shi, Z., Shi, X., Ullah, M., Li, A., Revin, V., and Yang, G.: Fabrication of nanocomposites and hybrid materials using microbial biotemplates. Adv. Compos. Hybrid. Mater. 1, 79 (2017).CrossRefGoogle Scholar
Wang, H., Du, A., Zhang, Z., Zhou, B., and Shen, J.: An optical dustbin made by the subwavelength-induced super-black carbon aerogels. J. Mater. Res. 32, 3524 (2017).CrossRefGoogle Scholar
Du, A., Zhou, B., Zhang, Z., and Shen, J.: A special material or a new state of matter: A review and reconsideration of the aerogel. Materials 6, 941 (2013).CrossRefGoogle ScholarPubMed
Dashairya, L., Rout, M., and Saha, P.: Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation. Adv. Compos. Hybrid. Mater. 1, 135 (2017).CrossRefGoogle Scholar
Sun, W., Du, A., Zhou, B., Shen, J., Huang, S., and Tang, J.: Ultra-low-density GNS/CA composite for peer review aerogels with ultra-high specific surface for dye removal. J. Sol. Gel Sci. Technol. 80, 1 (2016).CrossRefGoogle Scholar
Sun, W., Du, A., Yu, F., Shen, J., Huang, S., Tang, J., and Zhou, B.: Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10, 9123 (2016).CrossRefGoogle Scholar
Liu, D., Shen, J., Liu, N., Yang, H., and Du, A.: Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors. Electrochim. Acta 89, 571 (2013).CrossRefGoogle Scholar
Simon, P. and Gogotsi, Y.: Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008).CrossRefGoogle ScholarPubMed
Huang, J., Sumpter, B.G., and Meunier, V.: Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520 (2010).CrossRefGoogle Scholar
Ren, H., Shi, X., Zhu, J., Zhang, Y., Bi, Y., and Zhang, L.: Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption. J. Mater. Sci. 51, 6419 (2016).CrossRefGoogle Scholar
Shi, X., Zhu, J., Zhang, Y., He, S., Bi, Y., and Zhang, L.: Facile synthesis of structure-controllable, N-doped graphene aerogels and their application in supercapacitors. RSC Adv. 5, 77130 (2015).CrossRefGoogle Scholar
Haji, S. and Erkey, C.: Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications. Ind. Eng. Chem. Res. 42, 6933 (2003).CrossRefGoogle Scholar
Xie, P., Sun, W., Liu, Y., Du, A., Zhang, Z., Wu, G., and Fan, R.: Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 12, 10 (2017).Google Scholar
Ren, H., Zhu, J., Bi, Y., Xu, Y., and Zhang, L.: Facile fabrication of flexible graphene/porous carbon microsphere hybrid films and their application in supercapacitors. RSC Adv. 92, 89140 (2016).CrossRefGoogle Scholar
Hu, Z., Shao, Q., Huang, Y., Yu, L., Zhang, D., Xu, X., Lin, J., Liu, H., and Guo, Z.: Light triggered interfacial damage self-healing of poly(p-phenylene benzobisoxazole) fiber composites. Nanotechnology 29, 185602 (2018).CrossRefGoogle ScholarPubMed
Lin, J., Chen, X., Chen, C., Hu, J., Zhou, C., CAi, X., Wang, W., Zheng, C., Zhang, P., Cheng, J., and Guo, Z.: Durably antibacterial and bacterially anti-adhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl. Mater. Interfaces 10, 6124 (2018).CrossRefGoogle Scholar
Wu, Z., Gao, S., Chen, L., Jiang, D., Shao, Q., Zhang, B., Zhai, Z., Wang, C., Zhao, M., Ma, Y., Zhang, X., Weng, L., Zhang, M., and Guo, Z.: Electrically insulated epoxy nanocomposites reinforced with synergistic core–shell SiO2@MWCNTs and montmorillonite bifillers. Macromol. Chem. Phys. 218, 1700357 (2017).CrossRefGoogle Scholar
Song, B., Wang, T., Sun, H., shao, Q., Zhao, J., Song, K., Hao, L., Wang, L., and Guo, Z.: Two-step hydrothermally synthesized carbon nanodots/WO photocatalysts with enhanced photocatalytic performance. Dalton Trans. 46, 15769 (2017).CrossRefGoogle Scholar
Sun, K., Xie, P., Wang, Z., Su, T., Shao, Q., Ryu, J., Zhang, X., Guo, J., Shanker, A., Li, J., Fan, R., Cao, D., and Guo, Z.: Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125, 50 (2017).CrossRefGoogle Scholar
Su, T., Shao, Q., Qin, Z., Guo, Z., and Wu, Z.: Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253 (2018).CrossRefGoogle Scholar
Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L., and Jiang, J.: Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis. J. Hazard. Mater. 198, 282 (2011).CrossRefGoogle ScholarPubMed
Ma, T., Chang, R., Zheng, P., Zhao, F., and Ma, X.: Fabrication of ultra-light graphene-based gels andtheir adsorption of methylene blue. Chem. Eng. J. 240, 595 (2014).CrossRefGoogle Scholar
Xie, Y.F., Qian, D.Y., Wu, D.L., and Ma, X.F.: Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem. Eng. J. 168, 959 (2011).CrossRefGoogle Scholar
Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., and Yang, Y.N.: Adsorption of cesium from aqueous solution using agricultural residue—Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. Water Res. 47, 2563 (2013).CrossRefGoogle Scholar
Hameed, B., Din, A., and Ahmad, A.: Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 141, 819 (2007).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Ge et al. supplementary material

Ge et al. supplementary material 1

Download Ge et al. supplementary material(PDF)
PDF 956.7 KB