Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T03:51:39.631Z Has data issue: false hasContentIssue false

Monocrystal elastic constants of orthotropic Y1Ba2Cu3O7: An estimate

Published online by Cambridge University Press:  31 January 2011

Hassel Ledbetter
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80303
Ming Lei
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80303
Get access

Abstract

For Y1Ba2Cu3O7, using only reported monocrystal measurements and some analysis–theory, we estimated the complete nine-component orthotropic-symmetry elastic-stiffness matrix, the Voigt Cij matrix. Comparison with very-high-frequency tetragonal-symmetry phonon-dispersion results shows good agreement (9% on average), except for C12.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Reicharcit, W., Pintschovius, L., Hennion, B., and Collin, F., Supercond. Sci. Technol. 1, 173 (1988).CrossRefGoogle Scholar
2.Hearmon, R., in Physics of the Solid State (Academic, New York, 1969), p. 401Google Scholar
3.Aleksandrov, I., Goncharov, A., and Stishov, S., JETP Lett. 47, 428 (1988).Google Scholar
4.Blackman, M., in Handbuch der Physik, B and VII, Teil 1 Kristallphysik I (Springer, Berlin, 1955), p. 325.Google Scholar
5.Inderhees, S., Salamon, M., Friedmann, T., and Ginsberg, D., Phys. Rev. B 36, 2401 (1987).CrossRefGoogle Scholar
6.Ledbetter, H. and Lei, M., J. Mater. Res. 5, 241 (1990).CrossRefGoogle Scholar
7.Golding, B., Haemmerle, W., Schneemeyer, L., and Waszczak, J., in IEEE 1988 Ultrasonics Symposium (IEEE, Piscataway, 1988), p. 1079.CrossRefGoogle Scholar
8.Baetzold, R., Phys. Rev. B 38, 11304 (1988).Google Scholar
9.Ledbetter, H., Metallk, Z.. (in press).Google Scholar
10.Ledbetter, H., in Proc. MRS Int. Meet. Adv. Mater. Volume 6: Superconductivity (Mater. Res. Soc, Pittsburgh, PA, 1989), p. 689.Google Scholar
11.Hill, R., Phys. Soc. A 65, 349 (1952).Google Scholar
12.Kim, T., Lüthi, B., Schwartz, M., Kühnberger, H., Wolf, B., Hampel, G., Nikl, D., and Grill, W., J. Magn. Magn. Mater. 76–77, 604 (1988).CrossRefGoogle Scholar
13.Saint-Paul, M., Tholence, J., Monceau, P., Noel, H., Levet, J., Potel, M., Gougeon, P., and Capponi, J., Solid State Commun. 66, 641 (1988).CrossRefGoogle Scholar
14.Saint-Paul, M., Tholence, J., Noel, H., Levet, J., Potel, M., and Gougeon, P., Solid State Commun. 69, 1161 (1989).CrossRefGoogle Scholar
15.Saint-Paul, M. and Henry, J., Solid State Commun. 72, 685 (1989).Google Scholar
16.Baumgart, P., Blumenröder, S., Erie, A., Hillebrands, B., Splittgerber, P., Grüntherodt, G., and Schmidt, H., Physica C 162–164, 1073 (1989).CrossRefGoogle Scholar
17.Baumgart, P., Blumenröder, S., Erie, A., Hillebrands, B., Splittgerber, P., Grüntherodt, G., and Schmidt, H., Solid State Commun. 69, 1135 (1989).CrossRefGoogle Scholar