Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T13:14:16.593Z Has data issue: false hasContentIssue false

Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol

Published online by Cambridge University Press:  23 August 2018

Yiming Song
Affiliation:
School of Chemical Engineering, Northwest University, Xi’an, Shaanxi 710069, China
Jun Li
Affiliation:
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, China
Chen Wang*
Affiliation:
School of Chemical Engineering, Northwest University, Xi’an, Shaanxi 710069, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Three photosensitizers containing zinc(II) porphyrin, ruthenium(II) dipyridine, and their combined porphyrin–polypyridyl metal complexes were used to modify TiO2 nanotubes that were obtained through the hydrothermal method to get inorganic–organic nanocomposite photocatalysts. The photosensitizer with distinctive structure can expand the photoresponse range of TiO2 toward the range of visible light, and the complexes with large conjugated π-electron systems are beneficial for improving the separation of photoelectrons from vacancies, effectively extending the life of excited electrons and thus enhancing the photocatalytic efficiency, thus establishing a favorable foundation for an efficient photocatalysis reaction. The photocatalytic reduction of CO2 aqueous solution into methanol was used to evaluate the photocatalytic effect of sensitized samples. All the photosensitized catalysts exhibited superior selectivity in liquid products during this process and methanol was the only liquid product in the system. The ZnPyP–RuBiPy sensitized TiO2 nanotubes showed the best photocatalytic effect. A possible mechanism for the photoreduction was also proposed in this paper.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

de Tacconi, N-R., Chanmanee, W., Dennis, B-H., and Rajeshwar, K.: Composite copper oxide–copper bromide films for the selective electroreduction of carbon dioxide. J. Mater. Res. 32, 1727 (2017).CrossRefGoogle Scholar
Liang, Y-J., Wu, W., Wang, P., Liou, S-C., Liu, D-X., and Ehrman, S-H.: Scalable fabrication of SnO2/eo-GO nanocomposites for the photoreduction of CO2 to CH4. Nano Res. 11, 4049 (2018).CrossRefGoogle Scholar
Boruban, C. and Nalbant, E.: EsenturkSynthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties. J. Mater. Res. 32, 3669 (2017).CrossRefGoogle Scholar
Ramesha, G-K., Brennecke, J-F., and Kamat, P-V.: Origin of catalytic effect in the reduction of CO2 at nanostructured TiO2 films. ACS Catal. 4, 3249 (2014).CrossRefGoogle Scholar
Yang, C-T., Wood, B-C., Bhethanabotla, V-R., and Joseph, B.: CO2 adsorption on anatase TiO2(101) surfaces in the presence of subnanometer Ag/Pt clusters: Implications for CO2 photoreduction. J. Phys. Chem. C 118, 26236 (2014).CrossRefGoogle Scholar
Ma, Y-J., Wang, Z-M., Xu, X-F., and Wang, J-Y.: Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2. Chin. J. Catal. 38, 1956 (2017).CrossRefGoogle Scholar
Feng, Z., Zeng, L., Chen, Y-J., Ma, Y-Y., Zhao, C-R., Jin, R-S., Lu, Y., Wu, Y., and He, Y-M.: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).CrossRefGoogle Scholar
Li, J-T., Luo, D-L., Yang, C-J., He, S-M., Chen, S-C., Lin, J-W., Zhu, L., and Li, X.: Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation. J. Solid State Chem. 203, 154 (2013).CrossRefGoogle Scholar
Inoue, T., Fujishima, A., Konishi, S., and Honda, K.: Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277, 637 (1979).CrossRefGoogle Scholar
Gonell, F., Puga, A-V., Julián-López, B., García, H., and Corma, A.: Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Appl. Catal., B 180, 263 (2016).CrossRefGoogle Scholar
Liu, J-T. and Zhang, J-B.: Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization. J. Mater. Res. 31, 1448 (2016).CrossRefGoogle Scholar
Pan, J., Wu, X., Wang, L-Z., Liu, G., Lu, G-Q., and Cheng, H-M.: Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem. Commun. 47, 8361 (2011).CrossRefGoogle ScholarPubMed
Low, J-X., Cheng, B., and Yu, J-G.: Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2. Appl. Surf. Sci. 392, 658 (2017).CrossRefGoogle Scholar
Zhao, H-L., Chen, J-T., Rao, G-Y., Deng, W., and Li, Y.: Enhancing photocatalytic CO2 reduction by coating an ultrathin Al2O3 layer on oxygen deficient TiO2 nanorods through atomic layer deposition. Appl. Surf. Sci. 404, 49 (2017).CrossRefGoogle Scholar
Li, C-X., Zhao, Z-Y., Lomboleni, H-S., Huang, H-W., and Peng, Z-J.: Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2017).CrossRefGoogle Scholar
Lyu, Z-P., Liu, B., Wang, R., and Tian, L-H.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).CrossRefGoogle Scholar
Song, W., Brennaman, M-K., Concepcion, J-J., Jurss, J-W., Hoertz, P-G., and Luo, H.: Interfacial electron transfer dynamics for [Ru(bpy)2((4,4′-PO3H2)2bpy)]2+ sensitized TiO2 in a dye-sensitized photoelectrosynthesis cell: Factors influencing efficiency and dynamics. J. Phys. Chem. C 115, 7081 (2011).CrossRefGoogle Scholar
Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).CrossRefGoogle Scholar
Zhang, W., Lai, W., and Cao, R.: Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin-and corrole-based systems. Chem. Rev. 117, 3717 (2017).CrossRefGoogle ScholarPubMed
Yao, S-A., Ruther, R-E., Zhang, L., Franking, R-A., Hamers, R-J., and Berry, J-F.: Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J. Am. Chem. Soc. 134, 15632 (2012).CrossRefGoogle ScholarPubMed
Koposova, E., Liu, X., Pendin, A., Thiele, B., Shumilova, G., Ermolenko, Y., and Mourzina, Y.: Influence of meso-substitution of the porphyrin ring on enhanced hydrogen evolution in a photochemical system. J. Phys. Chem. C 120, 13873 (2016).CrossRefGoogle Scholar
Wang, C., Ma, X-X., and Li, J.: Reduction of CO2 aqueous solution by using photosensitized–TiO2 nanotube catalysts modified by supramolecular metalloporphyrins–ruthenium(II) polypyridyl complexes. J. Mol. Catal. A: Chem. 363, 108 (2012).CrossRefGoogle Scholar
Wang, C., Li, J., Mele, G., Yang, G-M., Zhang, F-X., Palmisano, L., and Vasapollo, G.: Efficient degradation of 4-nitrophenol by using functionalized porphyrin–TiO2 photocatalysts under visible irradiation. Appl. Catal., B 76, 218 (2007).CrossRefGoogle Scholar
Li, H., Yao, S., Wu, H-L., Qu, J-Y., Zhang, Z-M., Lu, T-B., Lin, W-B., and Wang, E-B.: Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction. Appl. Catal., B 224, 46 (2018).CrossRefGoogle Scholar
Sayre, H-J., White, T-A., and Brewer, K-J.: Increased photocatalytic activity in Ru(II), Rh(III) supramolecular bimetallic complexes with terminal ligand substitution. Inorg. Chim. Acta 454, 89 (2017).CrossRefGoogle Scholar
Yan, B-B., Li, Y-F., Calhoun, S-R., Cottrell, N-G., Lella, D-J., and Celestian, A-J.: Self-assembled hybrid solids of luminescent Ru(II) polypyridyl complexes and polyoxometalates. Inorg. Chem. Commun. 43, 23 (2014).CrossRefGoogle Scholar
Kwak, J-H., Kovarik, L., and Szanyi, J.: CO2 reduction on supported Ru/Al2O3 catalysts: Cluster size dependence of product selectivity. ACS Catal. 3, 2449 (2013).CrossRefGoogle Scholar
Sahara, G., Kumagai, H., Maeda, K., Kaeffer, N., Artero, V., Higashi, M., and Ishitani, O.: Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)–Re(I) complex photocatalyst and a CoOx/TaON photoanode. J. Am. Chem. Soc. 138, 14152 (2016).CrossRefGoogle Scholar
Liang, Y-J., Xie, Y., Chen, D-X., Guo, C-F., Hou, S., Wen, T., Yang, F-Y., Deng, K., Wu, X-C., Smalyukh, I-I., and Liu, Q.: Symmetry control of nanorod superlattice driven by a governing force. Nat. Commun. 8, 1410 (2017).CrossRefGoogle ScholarPubMed
Schneider, J., Vuong, K-Q., Calladine, J-A., Sun, X-Z., Whitwood, A-C., George, M-W., and Perutz, R-N.: Photochemistry and photophysics of a Pd(II) metalloporphyrin: Re(I) tricarbonyl bipyridine molecular dyad and its activity toward the photoreduction of CO2 to CO. Inorg. Chem. 50, 11877 (2011).CrossRefGoogle ScholarPubMed
Zhang, S-T., Li, C-M., Yan, H., Wei, M., Evans, D-G., and Duan, X.: Density functional theory study on the metal-support interaction between Ru cluster and anatase TiO2(101) surface. J. Phys. Chem. C 118, 3514 (2014).CrossRefGoogle Scholar
Kong, D., Zhu, J., and Ernst, K-H.: Low-temperature dissociation of CO2 on a Ni/CeO2(111)/Ru(0001) model catalyst. J. Phys. Chem. C 120, 5980 (2016).CrossRefGoogle Scholar
Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., and Šolcová, O.: Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal., B 89, 494 (2009).CrossRefGoogle Scholar
Das, S-K. and Bhattacharyya, A-J.: High lithium storage in mixed crystallographic phase nanotubes of titania and carbon-titania. J. Phys. Chem. C 113, 17367 (2009).CrossRefGoogle Scholar
Nabid, M-R., Zamiraei, Z., Sedghi, R., and Safari, N.: Cationic metalloporphyrins for synthesis of conducting, water-soluble polyaniline. React. Funct. Polym. 69, 319 (2009).CrossRefGoogle Scholar
Liska, P., Vlachopoulos, N., Nazeeruddin, M-K., Comte, P., and Graetzel, M.: Cis-diaquabis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible. J. Am. Chem. Soc. 110, 3686 (1988).CrossRefGoogle Scholar
Araki, K., Araujo, A-L., Toyama, M-M., Franco, M., Azevedo, C-M., Angnes, L., and Toma, H-E.: Spectroscopic and electrochemical study of a tetrapyridylporphyrin modified with four bis-(1,10-phenanthroline) chlororuthenium(II) complexes. J. Porphyrins Phthalocyanines 2, 467 (1998).3.0.CO;2-E>CrossRefGoogle Scholar
Tao, R-H., Wu, J-M., Xue, H-X., Song, X-M., Pan, X., Fang, X-Q., and Dai, S-Y.: A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized solar cells. J. Power Sources 195, 2989 (2010).CrossRefGoogle Scholar
Zhou, Z., Zhou, X., Liu, Q., Zhang, X., and Liu, H.: Fixation of zinc(II) ion to dioxygen in a highly deformed porphyrin: Implications for the oxygen carrier mechanism of distorted heme. Org. Lett. 17, 4078 (2015).CrossRefGoogle Scholar
Xiao, Y., Wu, J., Yue, G., Xie, G., Lin, J., and Huang, M.: The preparation of titania nanotubes and its application in flexible dye-sensitized solar cells. Electrochim. Acta 55, 4573 (2010).CrossRefGoogle Scholar
Johnson, J-A., Luo, J., Zhang, X., Chen, Y-S., Morton, M-D., Echeverría, E., and Zhang, J.: Porphyrin-metalation-mediated tuning of photoredox catalytic properties in metal-organic frameworks. ACS Catal. 5, 5283 (2015).CrossRefGoogle Scholar
Rodriguez, J., Liu, P., Stacchiola, D-J., Senanayake, S-D., White, M-G., and Chen, J-G.: Hydrogenation of CO2 to methanol: Importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal. 5, 6696 (2015).CrossRefGoogle Scholar
Zeng, G., Qiu, J., Li, Z., Pavaskar, P., and Cronin, S-B.: CO2 reduction to methanol on TiO2-passivated GaP photocatalysts. ACS Catal. 4, 3512 (2014).CrossRefGoogle Scholar
Vesborg, P-C-K. and Seger, B.: Performance limits of photoelectrochemical CO2 reduction based on known electrocatalysts and the case for two-electron reduction products. Chem. Mater. 28, 8844 (2016).CrossRefGoogle Scholar
Mele, G., Del Sole, R., Vasapollo, G., Marcì, G., Garcìa-Lòpez, E., Palmisano, L., and Guascito, M.R.: TRMC, XPS, and EPR characterizations of polycrystalline TiO2 porphyrin impregnated powders and their catalytic activity for 4-nitrophenol photodegradation in aqueous suspension. J. Phys. Chem. B 109, 12347 (2005).CrossRefGoogle ScholarPubMed
Mele, G., Garcìa-Lòpez, E., Palmisano, L., Dyrda, G., and Słota, R.: Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide double-decker phthalocyanine complexes. J. Phys. Chem. C 111, 6581 (2007).CrossRefGoogle Scholar
, X-F., Li, J., Wang, C., Duan, M-Y., Luo, Y., Yao, G-P., and Wang, J-L.: Enhanced photoactivity of CuPp–TiO2 photocatalysts under visible light irradiation. Appl. Surf. Sci. 257, 795 (2010).CrossRefGoogle Scholar
Doherty, M-D., Grills, D-C., Muckerman, J-T., Polyansky, D-E., and Fujita, E.: Toward more efficient photochemical CO2 reduction: Use of scCO2 or photogenerated hydrides. Coord. Chem. Rev. 254, 2472 (2010).CrossRefGoogle Scholar
Grills, D-C. and Fujita, E.: New directions for the photocatalytic reduction of CO2: Supramolecular, scCO2 or biphasic ionic liquid-scCO2 systems. J. Phys. Chem. Lett. 1, 2709 (2010).CrossRefGoogle Scholar
Dimitrijevic, N-M., Vijayan, B-K., Poluektov, O-G., Rajh, T., Gray, K-A., He, H., and Zapol, P.: Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc. 133, 3964 (2011).CrossRefGoogle Scholar
Woolerton, T-W., Sheard, S., Reisner, E., Pierce, E., Ragsdale, S-W., and Armstrong, F-A.: Efficient and clean photo-reduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 132, 2132 (2010).CrossRefGoogle Scholar