Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T05:52:53.270Z Has data issue: false hasContentIssue false

Mechanical properties of nanocrystalline and epitaxial TiN films on (100) silicon

Published online by Cambridge University Press:  31 January 2011

H. Wang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7916
A. Sharma
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7916
A. Kvit
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7916
Q. Wei
Affiliation:
North Carolina A–7916
X. Zhang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
C. C. Koch
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7916
Get access

Abstract

We investigated mechanical properties of TiN as a function of microstructure varying from nanocrystalline to single crystal TiN films deposited on (100) silicon substrates. By varying the substrate temperature from 25 to 700 °C during pulsed laser deposition, the microstructure of TiN films changed from nanocrystalline (having a uniform grain size of 8 nm) to a single crystal epitaxial film on the silicon (100) substrate. The microstructure and epitaxial nature of these films were investigated using x-ray diffraction and high-resolution transmission electron microscopy. Hardness measurements were made using nanoindentation techniques. The nanocrystalline TiN contained numerous triple junctions without any presence of amorphous regions. The width of the grain boundary remained constant at less than 1 nm as a function of boundary angle. Similarly the grain boundary structure did not change with grain size. The hardness of TiN films decreased with decreasing grain size. This behavior was modeled recently involving grain boundary sliding, which is particularly relevant in the case of hard materials such as TiN.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Buhl, R., Pulker, H.K., and Moll, E., Thin Solid Films 80, 265 (1981).CrossRefGoogle Scholar
2Nakamura, K., Inagawa, K., Tsuruoka, K., and Komiya, S., Thin Solid Films 40, 155 (1977).CrossRefGoogle Scholar
3Hatscheck, R.L., Am. Mach. Special Report No. 752, March (1983), p. 129.Google Scholar
4Shenhar, A., Gotman, I., Radin, S., Ducheyne, P., and Gutmanas, E.Y., Surf. Coat. Technol. 126, 210 (2000).CrossRefGoogle Scholar
5Musil, J., Surf. Coat. Technol. 125, 341 (2000).CrossRefGoogle Scholar
6Zega, B., Kormann, M., and Amiguet, J., Thin Solid Films 54, 577 (1977).CrossRefGoogle Scholar
7Roquiny, P., Mathot, G., Tewagne, G., Bodart, F., and van den Brande, P., Nuclear Instruments & Methods in Physics Research, Section B 161–163, 600 (2000).CrossRefGoogle Scholar
8Vershinin, N., Filomov, K., Straumal, B., Gust, W., Wiener, I., Rabkin, E., and Kazakevich, A., Surf. Coat. Technol. 125, 229 (2000).CrossRefGoogle Scholar
9Wittmer, M., Studer, B., and Melchiar, H., J. Appl. Phys. 52, 5722 (1981).CrossRefGoogle Scholar
10Narayan, J., Tiwari, P., Singh, J., Chowdhury, R., and Zheleva, T., Appl. Phys. Lett. 61, 1290 (1992); J. Narayan, U.S. Patent No. 5 406 123 (11 April 1995).CrossRefGoogle Scholar
11Gerlach, J.W., Kraus, T., Sienz, S., Moske, M., Zeitler, M., and Rauschenbach, B., Surf. Coat. Technol. 103–104, 281 (1998).CrossRefGoogle Scholar
12Volz, K., Ensinger, W., Stritzker, B., and Rauschenbach, B., Surf. Coat. Technol. 103–104, 251 (1998).Google Scholar
13Patsalas, P., Chariridis, C., Logothetidis, S., Dimitridis, C.A., and Valassiades, O., J. Appl. Phys. 86, 5296 (1999).CrossRefGoogle Scholar
14Ishihara, S., and Hanabusa, M., J. Appl. Phys. 84, 596 (1998).CrossRefGoogle Scholar
15Yun, J.Y., and Rhee, S.W., Thin Solid Films 320, 163 (1998).CrossRefGoogle Scholar
16Biunno, N., Narayan, J., Homeister, S.K., Srivatsa, A.R., and Singh, R.K., Appl. Phys. Lett, 54, 1519 (1989).CrossRefGoogle Scholar
17Conrad, H., Acta Metall. 11, 75 (1963).CrossRefGoogle Scholar
18Suryanarayana, C., Int. Mater. Review 40, 41 (1995).CrossRefGoogle Scholar
19Lawn, B., in Fracture of Brittle Solids, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 1995), pp. 332334.Google Scholar
20Conrad, H. and Narayan, J., Scripta Mater. 42, 1025 (2000).CrossRefGoogle Scholar
21Narayan, J., J. Nanoparticle Res. 2, 91 (2000).CrossRefGoogle Scholar
22Koch, C.C. and Narayan, J., in Structure and Mechanical Properties of Nanophase Materials-Theory and Computer Simulation vs Experiment, edited by Farkas, D., Kung, H., Mayo, M., Van Swygenhoven, H., and Weertman, J. (Mater. Res. Soc. Symp. Proc. 634, Warrendale, PA, 2001), p. B6.1.1.Google Scholar
23Schiotz, J., DiTolla, F.D., and Jacobsen, K.W., Nature 391, 561 (1998).CrossRefGoogle Scholar
24Venkatesan, R., Sharma, A.K., Kvit, A., Wei, Q., Sankar, J., and Narayan, J., in Structure and Mechanical Properties of Nanophase Materials-Theory and Computer Simulation vs Experiment, edited by Farkas, D., Kung, H., Mayo, M., Van Swygenhoven, H., and Weertman, J. (Mater. Res. Soc. Symp. Proc. 634, Warrendale, PA, 2001), p. B5.1.Google Scholar
25Divakar, R., Sundararaman, D., and Ranganathan, S., Scripta Met. 38, 59 (1998).Google Scholar
26Narayan, J. and Washburn, J., Phil. Mag. 26, 1179 (1972).CrossRefGoogle Scholar
27Johansson, B.O., Sundgren, J-E, Greene, J.E., Rockett, A. and Barnett, S.A., J. Vac. Sci. Technol. A 3, 303 (1984).CrossRefGoogle Scholar
28Mirkarimi, P.B., Hultman, L., and Barnett, S.A., Appl. Phys. Lett. 57, 2654 (1990).CrossRefGoogle Scholar