Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T12:54:18.281Z Has data issue: false hasContentIssue false

Mechanical characteristics and deformation mechanism of boron nitride nanotube reinforced metal matrix nanocomposite based on molecular dynamics simulations

Published online by Cambridge University Press:  08 May 2018

Reza Rezaei*
Affiliation:
Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood 36199-95161, Iran
Mahmoud Shariati
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
Hossein Tavakoli-Anbaran
Affiliation:
Faculty of Physics, Shahrood University of Technology, Shahrood 36199-95161, Iran
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Boron nitride nanotubes (BNNTs) have been utilized to strengthen various engineering materials especially metal matrix composites thanks to their extraordinary high tensile strength, elastic modulus, and failure strain. In this paper, single- and multi-walled BNNTs were therefore used to combine with aluminum (Al) metal matrix. Mechanical characteristics and deformation mechanism of nanocomposites reinforced with long (continuous) and short (discontinuous) BNNTs were then investigated for different loadings including uniaxial tension and compression and different boundary conditions based on molecular dynamics simulations. It was found that long BNNTs remarkably improved tensile mechanical properties of the matrix and effectively enhanced elastic modulus and strength of the nanocomposites by 82% and 79.4%, respectively. They could provide effective barriers to propagation path of dislocations formed inside the matrix. Diameter and wall number of the reinforcement did not leave considerable impacts on the nanocomposite behavior while its atomic fraction remarkably influenced the material response.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhi, C., Bando, Y., Tang, C., and Golberg, D.: Boron nitride nanotubes. Mater. Sci. Eng., R 70, 92 (2010).CrossRefGoogle Scholar
Santosh, M., Maiti, P.K., and Sood, A.K.: Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J. Nanosci. Nanotechnol. 9, 5425 (2009).Google Scholar
Suryavanshi, A.P., Yu, M-F., Wen, J., Tang, C., and Bando, Y.: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527 (2004).Google Scholar
Chopra, N.G. and Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297 (1998).Google Scholar
Liao, M-L., Wang, Y-C., Ju, S-P., Lien, T-W., and Huang, L-F.: Deformation behaviors of an armchair boron-nitride nanotube under axial tensile strains. J. Appl. Phys. 110, 054310 (2011).Google Scholar
Liao, M-L., Lian, T-W., and Ju, S-P.: Tensile and compressive behaviours of a boron nitride nanotube: Temperature effects. Mater. Sci. Forum 700, 125 (2012).Google Scholar
Golberg, D., Bando, Y., Tang, C.C., and Zhi, C.Y.: Boron nitride nanotubes. Adv. Mater. 19, 2413 (2007).Google Scholar
Lahiri, D., Hadjikhani, A., Zhang, C., Xing, T., Li, L.H., Chen, Y., and Agarwal, A.: Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior. Mater. Sci. Eng., A 574, 149 (2013).Google Scholar
Chen, Y., Zou, J., Campbell, S.J., and Caer, G.L.: Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430 (2004).Google Scholar
Zhi, C., Bando, Y., Tang, C., Honda, S., Kuwahara, H., and Golberg, D.: Boron nitride nanotubes/polystyrene composites. J. Mater. Res. 21, 2794 (2006).Google Scholar
Zhi, C., Bando, Y., Terao, T., Tang, C., Kuwahara, H., and Golberg, D.: Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Funct. Mater. 19, 1857 (2009).CrossRefGoogle Scholar
Zhi, C., Bando, Y., Tang, C., Kuwahara, H., and Golberg, D.: Grafting boron nitride nanotubes: From polymers to amorphous and graphitic carbon. J. Phys. Chem. C 111, 1230 (2007).Google Scholar
Ravichandran, J., Manoj, A.G., Liu, J., Manna, I., and Carroll, D.L.: A novel polymer nanotube composite for photovoltaic packaging applications. Nanotechnology 19, 085712 (2008).Google Scholar
Zhi, C.Y., Bando, Y., Tang, C.C., Huang, Q., and Golberg, D.: Boron nitride nanotubes: Functionalization and composites. J. Mater. Chem. 18, 3900 (2008).Google Scholar
Zhi, C., Zhang, L., Bando, Y., Terao, T., Tang, C., Kuwahara, H., and Golberg, D.: New crystalline phase induced by boron nitride nanotubes in polyaniline. J. Phys. Chem. C 112, 17592 (2008).Google Scholar
Zhi, C.Y., Bando, Y., Wang, W.L., Tang, C.C., Kuwahara, H., and Golberg, D.: Mechanical and thermal properties of polymethyl methacrylate–BN nanotube composites. J. Nanomater. 2008, 642036 (2008).CrossRefGoogle Scholar
Lahiri, D., Rouzaud, F., Richard, T., Keshri, A.K., Bakshi, S.R., Kos, L., and Agarwal, A.: Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater. 6, 3524 (2010).Google Scholar
Zhi, C., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H., and Golberg, D.: Characteristics of boron nitride nanotube–polyaniline composites. Angew. Chem., Int. Ed. 44, 7929 (2005).Google Scholar
Bansal, N.P., Hurst, J.B., and Choi, S.R.: Boron nitride nanotubes-reinforced glass composites. J. Am. Ceram. Soc. 89, 388 (2006).Google Scholar
Huang, Q., Bando, Y., Xu, X., Nishimura, T., Zhi, C., Tang, C., Xu, F., Gao, L., and Golberg, D.: Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. Nanotechnology 18, 485706 (2007).Google Scholar
Griebel, M. and Hamaekers, J.: Molecular dynamics simulations of boron–nitride nanotubes embedded in amorphous Si–B–N. Comput. Mater. Sci. 39, 502 (2007).Google Scholar
Lahiri, D., Singh, V., Benaduce, A.P., Seal, S., Kos, L., and Agarwal, A.: Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in vitro biocompatibility to osteoblasts. J. Mech. Behav. Biomed. Mater. 4, 44 (2011).Google Scholar
Tatarko, P., Grasso, S., Porwal, H., Chlup, Z., Saggar, R., Dlouhy, I., and Reece, M.J.: Boron nitride nanotubes as a reinforcement for brittle matrices. J. Eur. Ceram. Soc. 34, 3339 (2014).Google Scholar
Trivedi, S., Sharma, S.C., and Harsha, S.P.: Evaluations of young’s modulus of boron nitride nanotube reinforced nano-composites. Procedia Mater. Sci. 6, 1899 (2014).Google Scholar
Xue, Y., Jiang, B., Bourgeois, L., Dai, P., Mitome, M., Zhang, C., Yamaguchi, M., Matveev, A., Tang, C., Bando, Y., Tsuchiya, K., and Golberg, D.: Aluminum matrix composites reinforced with multi-walled boron nitride nanotubes fabricated by a high-pressure torsion technique. Mater. Des. 88, 451 (2015).Google Scholar
Yamaguchi, M., Pakdel, A., Zhi, C., Bando, Y., Tang, D-M., Faerstein, K., Shtansky, D., and Golberg, D.: Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons. Nanoscale Res. Lett. 8, 3 (2013).Google Scholar
Yamaguchi, M., Tang, D-M., Zhi, C., Bando, Y., Shtansky, D., and Golberg, D.: Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids. Acta Mater. 60, 6213 (2012).Google Scholar
Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).Google Scholar
Mendelev, M.I., Srolovitz, D.J., Ackland, G.J., and Han, S.: Effect of Fe segregation on the migration of a non-symmetric sigma-5 tilt grain boundary in Al. J. Mater. Res. 20, 208 (2005).Google Scholar
Tersoff, J.: Modeling solid-state chemistry: Interatomic potentials for mnlticomponent systems. Phys. Rev. B 39, 5566 (1989).Google Scholar
Arcidiacono, S., Walther, J.H., Poulikakos, D., Passerone, D., and Koumoutsakos, P.: Solidification of gold nanoparticles in carbon nanotubes. Phys. Rev. Lett. 94, 105502 (2005).Google Scholar
Song, H.Y. and Zha, X.W.: Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube–aluminum composites. Comput. Mater. Sci. 49, 899 (2010).Google Scholar
Song, X., Gan, Z., Liu, S., Yan, H., and Lv, Q.: Computational study of thermocompression bonding of carbon nanotubes to metallic substrates. J. Appl. Phys. 106, 104308 (2009).CrossRefGoogle Scholar
Banhart, F.: Interactions between metals and carbon nanotubes: At the interface between old and new materials. Nanoscale 1, 201 (2009).Google Scholar
Choi, B.K., Yoon, G.H., and Lee, S.: Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Composites, Part B 91, 119 (2016).Google Scholar
Kim, Y., Lee, J., Yeom, M.S., Shin, J.W., Kim, H., Cui, Y., Kysar, J.W., Hone, J., Jung, Y., Jeon, S., and Han, S.M.: Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 2114 (2013).Google Scholar
Rezaei, R., Shariati, M., Tavakoli-Anbaran, H., and Deng, C.: Mechanical characteristics of CNT-reinforced metallic glass nanocomposites by molecular dynamics simulations. Comput. Mater. Sci. 119, 19 (2016).Google Scholar
Rezaei, R., Deng, C., Shariati, M., and Tavakoli-Anbaran, H.: The ductility and toughness improvement in metallic glass through the dual effects of graphene interface. J. Mater. Res. 32, 392 (2017).Google Scholar
Rezaei, R., Deng, C., Tavakoli-Anbaran, H., and Shariati, M.: Deformation twinning-mediated pseudoelasticity in metal–graphene nanolayered membrane. Philos. Mag. Lett. 96, 322 (2016).Google Scholar
Filippova, V.P., Kunavin, S.A., and Pugachev, M.S.: Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances. Inorg. Mater. Appl. Res. 6, 1 (2015).Google Scholar
Kang, J.W. and Hwang, H.J.: Comparison of C60 encapsulations into carbon and boron nitride nanotubes. J. Phys.: Condens. Matter 16, 3901 (2004).Google Scholar
Mohammadpour, E. and Awang, M.: Nonlinear finite-element modeling of graphene and singleand multi-walled carbon nanotubes under axial tension. Appl. Phys. A 106, 581 (2012).Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 17, 1 (1995).Google Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool modelling. Simul. Mater. Sci. Eng. 18, 015012 (2010).Google Scholar

Rezaei et al. supplementary material

Rezaei et al. supplementary material 1

Download Rezaei et al. supplementary material(Video)
Video 1.5 MB

Rezaei et al. supplementary material

Rezaei et al. supplementary material 2

Download Rezaei et al. supplementary material(Video)
Video 766.9 KB
Supplementary material: File

Rezaei et al. supplementary material

Rezaei et al. supplementary material 3

Download Rezaei et al. supplementary material(File)
File 16.9 KB

Rezaei et al. supplementary material

Rezaei et al. supplementary material 4

Download Rezaei et al. supplementary material(Video)
Video 840.8 KB

Rezaei et al. supplementary material

Rezaei et al. supplementary material 5

Download Rezaei et al. supplementary material(Video)
Video 967.4 KB

Rezaei et al. supplementary material

Rezaei et al. supplementary material 6

Download Rezaei et al. supplementary material(Video)
Video 1.5 MB

Rezaei et al. supplementary material

Rezaei et al. supplementary material 7

Download Rezaei et al. supplementary material(Video)
Video 1.2 MB

Rezaei et al. supplementary material

Rezaei et al. supplementary material 8

Download Rezaei et al. supplementary material(Video)
Video 971.3 KB

Rezaei et al. supplementary material

Rezaei et al. supplementary material 9

Download Rezaei et al. supplementary material(Video)
Video 874.2 KB