Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T12:32:32.026Z Has data issue: false hasContentIssue false

Magnetoresistance, temporal evolution, and relaxation of the electrical resistivity in the re-entrant semiconducting La0.80Ba0.20CoO3 perovskite

Published online by Cambridge University Press:  31 January 2011

R. D. Sánchez
Affiliation:
Dpto. Física Aplicada, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
J. Mira
Affiliation:
Dpto. Física Aplicada, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
J. Rivas
Affiliation:
Dpto. Física Aplicada, Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain
M. P. Breijo
Affiliation:
Dpto. Química Fundamental e Industrial, Universidad de A Coruña, 15071 A Coruña, Spain
M. A. Señarís-Rodríguez*
Affiliation:
Dpto. Química Fundamental e Industrial, Universidad de A Coruña, 15071 A Coruña, Spain
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report here a study on the electrical and magnetic properties of La1−xBaxCoO3 in the re-entrant semiconducting region (x = 0.20). We find that in this material: (i) the insulator-metal-insulator sequence is unstable and evolves toward a purely semiconducting behavior; the initial r versus T curve can be reinstated upon appropriate annealing treatments; (ii) there are relaxation effects that can be seen by changing the polarity of the electrodes; (iii) there is a negative magnetoresistance Δρ/ρ ∼ 2–3%, for a field as low as 9 kOe, especially at the metal-insulating transition temperatures; and (iv) there are important fluctuations in the electrical resistivity. Taking into account these experimental observations, we can interpret this material as an inhomogeneous system where two thermodynamic phases, one semiconducting and the other metallic and ferromagnetic, coexist, although they are crystallographically indistinguishable.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nagaev, E.L., Phys. Status Solidi (B) 186, 9 (1994) and references therein.CrossRefGoogle Scholar
2.Goodenough, J. B., Zhou, J-S., and Allan, K., J. Mater. Chem. 1, 715 (1991).CrossRefGoogle Scholar
3.de Teresa, J. M., Ibarra, M. R., Algarabel, P. A., Ritter, C., Marquina, C., Blasco, J., García, J., del Moral, A., and Arnold, Z., Nature 386, 256 (1997).CrossRefGoogle Scholar
4.Koroleva, L.I., Demin, R. V., and Balbashov, A. M., JETP Lett. 65, 474 (1997).CrossRefGoogle Scholar
5.Ju, H. L. and Sohn, Hyunchul, J. Mag. Mater. 167, 200 (1997).CrossRefGoogle Scholar
6.Koehler, W.C. and Wollan, E.O., J. Phys. Chem. Solids 2, 100 (1957).CrossRefGoogle Scholar
7.Raccah, P. M. and Goodenough, J. B., Phys. Rev. 155, 932 (167).CrossRefGoogle Scholar
8.Goodenough, J. B., J. Phys. Chem. Solids 6, 287 (1958).CrossRefGoogle Scholar
9.Señarís-Rodríguez, M.A. and Goodenough, J. B., J. Solid State Chem. 116, 224 (1995).CrossRefGoogle Scholar
10.Jonker, G.H. and van Santen, J. H., Physica 19, 120 (1953).CrossRefGoogle Scholar
11.Goodenough, J. B., Mater. Res. Bull. 6, 967 (1971).CrossRefGoogle Scholar
12.Señaris-Rodríguez, M.A. and Goodenough, J. B., J. Solid State Chem. 118, 323 (1995).CrossRefGoogle Scholar
13.Ahn, C.H., Hammond, R.H., Geballe, T.H., Beasley, M.R., Triscone, J.M., Decroux, M., Fisher, O., Antognazza, L., and Char, K., Appl. Phys. Lett. 70, 206 (1997).CrossRefGoogle Scholar
14.Hardner, H.T., Weissman, M. B., Jaime, M., Treece, R. E., Dorsey, P. C., Horwitz, J. S., and Chrisey, D.B., J. Appl. Phys. 81, 272 (1997).CrossRefGoogle Scholar
15.Ceramic Materials for Electronics, Processing, Properties and Applications, 2nd ed., edited by Buchanan, Relva C. (Marcel Dekker, New York, 1991).Google Scholar
16.Nowotny, J. and Rekas, M., Ceram. Int. 17, 227 (1991).CrossRefGoogle Scholar
17.Golovanov, V., Mihaly, L., and Moodenbaugh, A.R., Phys. Rev. B 53, 8207 (1996).CrossRefGoogle Scholar
18.Mahendiran, R. and Raychaudhuri, K., Phys. Rev. B 54, 16044 (1996).CrossRefGoogle Scholar
19.Mahendiran, R., Raychaudhuri, K., Chainani, A., and Sarma, D. D., Rev. Sci, Instrum. 66, 3071 (1995).CrossRefGoogle Scholar
20.Sánchez, M., Rey, C., Breijo, M. P., Señarís-Rodríguez, M. A., Castro, S., Mira, J., Sánchez, R. D., and Rivas, J., unpublished results.Google Scholar
21.Ramesh, R., Krishnan, A., Keeble, D., and Poindexter, E., J. Appl. Phys. 81, 3543 (1997).CrossRefGoogle Scholar
22.Señarís-Rodríguez, M. A., Breijo, M. P., Castro, S., Mira, J., Sánchez, R. D., and Rivas, J., Bol. Soc. Esp. Cerám. Vidrio 37, 25 (1998).Google Scholar