Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T01:05:05.788Z Has data issue: false hasContentIssue false

Low-temperature crystallization induced by excimer laser irradiation of SrBi2Ta2O9 films

Published online by Cambridge University Press:  31 January 2011

Kwang Soo Seol
Affiliation:
RIKEN (Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
Hironao Hiramatsu
Affiliation:
Department of Electrical, Electronics, and Computer Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
Yoshimichi Ohki
Affiliation:
Department of Electrical, Electronics, and Computer Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
In-Hoon Choi
Affiliation:
Division of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Sungbuku-ku, Seoul 136-701, Korea
Yong-Tea Kim
Affiliation:
KIST, P.O. Box 131, Cheongryang, Seoul 130–650, Korea
Get access

Abstract

Transition of a SrBi2Ta2O9 precursor film from amorphous to crystalline was inducedby excimer laser irradiation. Both fluorite and perovskite crystalline structures in suchfilms were obtained by excimer laser irradiation at substrate temperatures between 200and 500 °C. Either an addition of excess bismuth in the precursor film or an increasein the substrate temperature enhanced the formation of the perovskite structure in theexcimer laser-induced annealing process, resulting in the perovskite crystalline phase ata relatively lower temperature of 500 °C. Such a low temperature is preferred whenSrBi2Ta2O9 is used in ferroelectric devices. The mechanism involved in thislaser-induced crystallization is also discussed.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Paz de Araujo, C.A., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 627 (1995).CrossRefGoogle Scholar
2.Mihara, T., Yoshimori, H., Watanabe, H., and Paz Araujo, C.A., Jpn. J. Appl. Phys. 34, 5233 (1995).CrossRefGoogle Scholar
3.Tanabe, N., Matsuki, T., Saitoh, S., Takeuchi, T., Kobayashi, S., Nakajima, T., Maejima, Y., Amanuma, K., Hase, T., Miyasaka, Y., and Kunio, T., Dig. Tech. Papers, 1995 Symp. VLSI Tech. (Japan Conf. Center, Tokyo, Japan, 1995), p. 123.CrossRefGoogle Scholar
4.Ito, Y., Ushikubo, M., Yokoyama, S., Matsunaga, H., Atsuki, T., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 35, 4925 (1996).CrossRefGoogle Scholar
5.Seol, K.S., Hiramatsu, H., Ohki, Y., Shin, D-S., Choi, I-H., and Kim, Y-T., in Ferroelectric Thin Films VII, edited by Jones, R.E., Schwartz, R.W., Summerfelt, S.R., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 293.Google Scholar
6.Lee, J-K., Park, B., and Hong, K-S., J. Appl. Phys. 88, 2825 (2000).CrossRefGoogle Scholar
7.Chen, T-C., Li, T., Zhang, X., and Desu, S.B., J. Mater. Res. 12, 1569 (1997).CrossRefGoogle Scholar
8.Desu, S.B. and Li, T.K., Mater. Sci. Eng. B 34, L4 (1995).CrossRefGoogle Scholar
9.Laser annealing of semiconductors, edited by Poate, J.M. and Mayer, J.W. (Academic Press, New York, 1982).Google Scholar
10.Osaka, T., Sakakibara, A., Seki, T., Ono, S., Koiwa, I., and Hashimoto, A., Jpn. J. Appl. Phys. 37, 597 (1998).CrossRefGoogle Scholar
11.Thompson, M.O., Galvin, G.J., Mayer, J.W., Peery, P.S., Poate, J.M., Jacobson, D.G., Cullis, A.G., and Chen, N.G., Phys. Rev. Lett. 52, 2360 (1984).CrossRefGoogle Scholar
12.Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M., and Jacobson, D.C., Appl. Phys. Lett. 33, 437 (1978).Google Scholar
13.Bruines, J.J.P., van Hal, R.P.M., Boots, H.M.J., Sinke, W., and Saris, F.W., Appl. Phys. Lett. 48, 1252 (1986).CrossRefGoogle Scholar
14.Nagasawa, N., Machida, A., Ami, T., and Suzuki, M., J. Ceram. Soc. Jpn. 106, 477 (1998).CrossRefGoogle Scholar