Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T04:20:38.609Z Has data issue: false hasContentIssue false

Low-resistance films of polyimides with impregnated copper sulfide

Published online by Cambridge University Press:  31 January 2011

R. V. A. Rowe
Affiliation:
Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá-Pr, Brazil
M. H. Kunita
Affiliation:
Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá-Pr, Brazil
M. F. Porto
Affiliation:
Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá-Pr, Brazil
E. C. Muniz
Affiliation:
Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá-Pr, Brazil
A. F. Rubira*
Affiliation:
Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá-Pr, Brazil
R. C. Nery
Affiliation:
Departamento de Fisica, Universidade Estadual de Maringá, Av. Colombo 5790, 87020–900 Maringá-Pr, Brazil
E. Radovanovic
Affiliation:
Instituto de Química, Unicamp, C. Postal 3154, Campinas, SP, Brazil
L. T. Taylor
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
N. Nazem
Affiliation:
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
*
a) Address all correspondence to this author.
Get access

Abstract

Surface modification of polyimides has been used to obtain better interaction with an inorganic material. Copper sulfide incorporation onto the surface of commercial Kapton® polyimide showed that treatment with base was necessary for adherence of the copper sulfide to the polymeric matrix. The optimized conditions for composite preparation, obtained by response surface methodology, was pH 1.4 at 80 °C for 3.67 h. Using these conditions, we obtained electrical resistance as low as 1.0 ohm for CuS\Kapton® composites. These optimized conditions were used to prepare other low-resistance polyimide composites. The resulting composites were analyzed by photoelectron spectroscopy. The presence of S(2p) and Cu(2p) peaks demonstrated the incorporation of copper sulfide onto the polyimide surface. Scanning electron microphotographs and the images from atomic force microscopy showed a homogeneous CuS distribution in all composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ghosh, M.K. and Mittal, K.L.. Polyimides: Fundamentals and Applications, edited by Ghosh, M.K. and Mittal, K.L. (Marcel Dekker, New York, 1996).Google Scholar
2.Wilson, A.M.. Thin Solid Films 83, 145 (1981).CrossRefGoogle Scholar
3.Bartlet, C.J., Segelken, J.M., and Teneketges, N.A.. IEEE Trans. Compon. Hybrids. Manuf. Technol. 12, 637 (1987).Google Scholar
4.Wilson, D., Stenzenberger, H.D., and Hergenrother, P.M.. Polyimides, edited by Wilson, D., Stenzenberger, H.D., and Hergenrother, P.M. (Blackie & Son, Glasgow, United Kingdom, 1990).CrossRefGoogle Scholar
5.Shih, D-Y., Paraszczak, J., Klymko, N., Flitsch, R., Nunes, S., Lewis, J., Yang, C., Cataldo, J., McGouey, R., Graham, W., Serino, R., and Galligan, E., J. Vac. Sci. Technol., A. 7, 1402 (1989).CrossRefGoogle Scholar
6.Strunskus, T., Grunze, M., Kochendoerfer, G., and Wöll, C.H., Langmuir 12, 2712 (1996).CrossRefGoogle Scholar
7.Lee, K.W., Kowalczyk, S.P., and Shaw, J.M., Macromolecules 23, 2097 (1990).CrossRefGoogle Scholar
8.Lee, K.W., Kowalczyk, S.P., and Shaw, J.M., Langmuir 7, 2450 (1991).CrossRefGoogle Scholar
9.Stoffel, N.C., Hsieh, M., Chandra, S., and Kramer, E.J., Chem. Mater. 8, 1035 (1996).CrossRefGoogle Scholar
10.Yamamoto, T., Tanaka, K., Kubota, E., and Osakada, K., Chem. Mater. 5, 1352 (1993).CrossRefGoogle Scholar
11.Hu, H., Campos, J., and Nair, P.K., J. Mater. Res. 11, 739 (1996).CrossRefGoogle Scholar
12.Montgomery, D.C., Design and Analysis of Experiments, 4th ed. (John Wiley & Sons, New York, 1997).Google Scholar
13.Barros Neto, B., Scarminio, I.S., and Bruns, R.E., Design and Optimization of Experiments (Unicamp, Campinas, Brazil, 1995).Google Scholar
14.Rubira, A.F., Taylor, L.T., Rancourt, J.D., St. Clair, A.K., and Stoakley, D.M., J. Mater. Sci.: Pure Appl. Chem. A 35, 621 (1998).Google Scholar
15.Navarre, M., in Polyimides: Synthesis, Characterization, and Ap-plications, edited by Mittal, K.L. (Plenum Press, New York, 1984), pp. 438439.Google Scholar
16.Silverstein, R.M., Bassler, G.C., and Morril, T.C., Spectrometric Identification of Organic Compounds, 4th ed. (John Wiley & Sons, New York, 1981).Google Scholar
17.Ishida, H., Wellinghoff, S.T., Boer, E., and Koenig, J.L., Macromolecules 13, 826 (1980).CrossRefGoogle Scholar
18.Koenig, J.L., Spectroscopy of Polymers (Amer. Chem. Soc., Washington, DC, 1993).Google Scholar
19.Boerio, F.J., Young, J.T., and Zhao, W.W., in Multidimensional Spectroscopy of Polymers (Amer. Chem. Soc., Washington, DC, 1995).Google Scholar
20.Leary, H.J. and Campbell, D.S., Surf. Interface Anal. 1, 75 (1979).CrossRefGoogle Scholar
21.Russat, J., Surf. Interface Anal. 11, 414 (1988).CrossRefGoogle Scholar
22.Leary, H.J. and Campbell, D.S., in Photon, Electron and Ion Probes of Polymer Structure and Properties, edited by Dwight, D.W., Fabish, T.J., and Thomas, H.R. (Amer. Chem. Soc., Washington, DC, 1981).Google Scholar
23.Salem, J.R., Sequeda, F.O., Duran, J., Lee, W.Y., and Yang, R.M., J. Vac. Sci. Technol. A 3, 739 (1985).Google Scholar
24.Clark, D.T. and Thomas, H.R., J. Polym. Sci., Polym. Chem. Ed. 16, 791 (1978).CrossRefGoogle Scholar
25.Silverman, B.D., Sanda, P.N., and Ho, P.S., J. Polym. Sci., Polym. Chem. Ed. 23, 2857 (1985).CrossRefGoogle Scholar
26.Buchwalter, P.L. and Baise, A.I., in Polyimides: Synthesis, Characterization, and Applications, edited by Mittal, K.L. (Plenum Press, New York, 1984).Google Scholar
27.Wagner, C.D., Riggs, W.M., Davis, L.E., Moudler, J.F., and Muilemberg, G.E., Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Edima, MN, 1978).Google Scholar
28.Strauss, S. and Wall, A., J. Res. Natl. Bur. Stand., Sect. A 63, 269 (1959).CrossRefGoogle Scholar
29.Sengupta, K.S. and Birnbaum, H.K., J. Vac. Sci. Technol. A 9, 2928 (1991).CrossRefGoogle Scholar
30.Stewart, W.C., Leu, J., and Jensem, K.F., in Interfaces between Polymers, Metals and Ceramics, edited by DeKoven, B.J., Gellman, A.J., and Rosemberg, R. (Mater. Res. Soc. Symp. Proc. 153, Pittsburgh, PA, 1989), pp. 285290.Google Scholar
31.Sroog, C.E., J. Polym. Sci. 11, 161 (1976).Google Scholar
32.Yamamoto, T., Taniguchi, A., Kubota, K., and Tominaga, Y., Inorg. Chim. Acta 104, L1 (1985).CrossRefGoogle Scholar
33.Dev, S., Taniguchi, A., Yamamoto, T., Kubota, K., and Tominaga, Y., Colloid Polym. Sci. 265, 922 (1987).CrossRefGoogle Scholar
34.Pertsin, A.J. and Pashunin, Y.M., Appl. Surf. Sci. 47, 115 (1991).CrossRefGoogle Scholar
35.Romand, M., Roubin, M., and Deloume, J.P., J. Electron Spectrosc. Relat. Phenom. 13, 229 (1978).CrossRefGoogle Scholar
36.Tu, H. and Wang, J., Polym. Degrad. Stab. 54, 195 (1996).CrossRefGoogle Scholar
37.Bahadur, S. and Gong, D., Wear 162–164, 397 (1993).CrossRefGoogle Scholar
38.Schö, G., Surf. Sci. 35, 96 (1973).CrossRefGoogle Scholar
39.Vorob’eva, T.N., Polym. Sci. 36, 1240 (1994).Google Scholar
40.JCPDS Database, No. 6-0464.Google Scholar
41.Grijalva, H., Inoue, M., Boggavarapu, S., and Calvert, P., J. Mater. Chem. 6, 1157 (1996).CrossRefGoogle Scholar
42.Grozdanov, I. and Najdoski, M., J. Solid State Chem 114, 469 (1995).CrossRefGoogle Scholar
43.Küpper, M. and Schultze, J.W., J. Electroanal. Chem. 427, 129 (1997).CrossRefGoogle Scholar
44.Feger, C. and Saraf, R., in Advances in Polyimide Science and Technology, edited by Feger, C., Khojasteh, M., and Htoo, M.S. (Technomic Publishing, New York, 1991).Google Scholar
45.Rubira, A.F., Rancourt, J.D., Caplan, M.L., St. Clair, A.K., and Taylor, L.T., Chem. Mater. 6, 2351 (1994).CrossRefGoogle Scholar