Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T01:22:45.020Z Has data issue: false hasContentIssue false

Lead-free piezoelectric materials and composites for high power density energy harvesting

Published online by Cambridge University Press:  22 June 2018

Deepam Maurya*
Affiliation:
Bio-Inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061, USA; and Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, Virginia 24061, USA
Mahesh Peddigari
Affiliation:
Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
Min-Gyu Kang
Affiliation:
Bio-Inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061, USA
Liwei D. Geng
Affiliation:
Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, USA
Nathan Sharpes
Affiliation:
Communications-Electronics Research, Development and Engineering Center, US Army RDECOM, Aberdeen Proving Ground, Maryland 21005, USA
Venkateswarlu Annapureddy
Affiliation:
Department of Physics, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
Haribabu Palneedi
Affiliation:
Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
Rammohan Sriramdas
Affiliation:
Bio-Inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061, USA
Yongke Yan
Affiliation:
Bio-Inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061, USA
Hyun-Cheol Song
Affiliation:
Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
Yu U. Wang
Affiliation:
Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, USA
Jungho Ryu*
Affiliation:
School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
Shashank Priya*
Affiliation:
Bio-inspired Materials and Devices Laboratory (BMDL), Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061, USA; and Materials Research Institute, Penn State, University Park, PA 16802, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In the emerging era of Internet of Things (IoT), power sources for wireless sensor nodes in conjunction with efficient and secure wireless data transfer are required. Energy harvesting technologies are promising solution toward meeting the requirements for sustainable power sources for the IoT. In this review, we focus on approaches for harvesting stray vibrations and magnetic field due to their abundance in the environment. Piezoelectric materials and piezoelectric–magnetostrictive [magnetoelectric (ME)] composites can be used to harvest vibration and magnetic field, respectively. Currently, such harvesters use modified lead zirconate titanate (or lead-based) piezoelectric materials and ME composites. However, environmental concerns and government regulations require the development of a suitable lead-free replacement for lead-based piezoelectric materials. In the past decade, several lead-free piezoelectric compositions have been developed and demonstrated with promising piezoelectric response. This paper reviews the significant results reported on lead-free piezoelectric materials with respect to high-density energy harvesting, covering novel processing techniques for improving the piezoelectric response and temperature stability. The review of the state-of-the-art studies on vibration and magnetic field harvesting is provided and the results are used to discuss various strategies for designing high-performance energy harvesting devices.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

d)

These authors contributed equally to this work.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

This article has been updated since original publication. A correction notice detailing the change has also been published at doi:10.1557/jmr.2018.227.

References

REFERENCES

Maurya, D., Yan, Y., and Priya, S.: Piezoelectric materials for energy harvesting. In Advanced Materials for Clean Energy, Xu, Q. and Kobayashi, T., eds. (CRC Press, Boca Raton, 2015); p. 143.CrossRefGoogle Scholar
Priya, S., Song, H-C., Zhou, Y., Varghese, R., Chopra, A., Kim, S-G., Kanno, I., Wu, L., Ha Dong, S., Ryu, J., and Polcawich Ronald, G.: A review on piezoelectric energy harvesting: Materials, methods, and circuits, energy harvest. System 4, 3 (2017).Google Scholar
Siddiqui, S., Kim, D-I., Duy, L.T., Nguyen, M.T., Muhammad, S., Yoon, W-S., and Lee, N-E.: High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15, 177 (2015).CrossRefGoogle Scholar
Wu, N., Wang, Q., and Xie, X.: Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Appl. Ocean Res. 50, 110 (2015).CrossRefGoogle Scholar
Mehmood, A., Abdelkefi, A., Hajj, M.R., Nayfeh, A.H., Akhtar, I., and Nuhait, A.O.: Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 332, 4656 (2013).CrossRefGoogle Scholar
Xie, X.D., Wang, Q., and Wu, N.: Potential of a piezoelectric energy harvester from sea waves. J. Sound Vib. 333, 1421 (2014).CrossRefGoogle Scholar
Yang, Y., Guo, W., Pradel, K.C., Zhu, G., Zhou, Y., Zhang, Y., Hu, Y., Lin, L., and Wang, Z.L.: Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833 (2012).CrossRefGoogle ScholarPubMed
Brody, P.S. and Crowne, F.: Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics. J. Electron. Mater. 4, 955 (1975).CrossRefGoogle Scholar
Paillard, C., Bai, X., Infante, I.C., Guennou, M., Geneste, G., Alexe, M., Kreisel, J., and Dkhil, B.: Photovoltaics with ferroelectrics: Current status and beyond. Adv. Mater. 28, 5153 (2016).CrossRefGoogle ScholarPubMed
Hyunuk Kim, Y.T. and Priya, S.: Piezoelectric energy harvesting. In Energy Harvesting Technologies, Priya, S. and Inman, D.J. (Springer, New York, 2009); p. 524.Google Scholar
Bowen, C.R., Kim, H.A., Weaver, P.M., and Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25 (2014).CrossRefGoogle Scholar
Liu, W.F. and Ren, X.B.: Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).CrossRefGoogle ScholarPubMed
Fu, H. and Cohen, R.E.: Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281 (2000).CrossRefGoogle ScholarPubMed
Jaffe, B.: Piezoelectric Ceramics (Academic Press, London, 1971).Google Scholar
Uchino, K.: Ferroelectric Devices, 2nd ed. (CRC Press, Boca Raton, 2010).Google Scholar
Guo, R., Cross, L.E., Park, S.E., Noheda, B., Cox, D.E., and Shirane, G.: Origin of the high piezoelectric response in PbZr1−xTixO3. Phys. Rev. Lett. 84, 5423 (2000).CrossRefGoogle ScholarPubMed
Noheda, B., Cox, D.E., Shirane, G., Park, S.E., Cross, L.E., and Zhong, Z.: Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3–8% PbTiO3. Phys. Rev. Lett. 86, 3891 (2001).CrossRefGoogle Scholar
Leontsev, S.O. and Eitel, R.E.: Progress in engineering high strain lead-free piezoelectric ceramics. Sci. Technol. Adv. Mater. 11, 044302 (2010).CrossRefGoogle ScholarPubMed
Zhang, S.J., Xia, R., and Shrout, T.R.: Lead-free piezoelectric ceramics versus PZT? J. Electroceram. 19, 251 (2007).CrossRefGoogle Scholar
Shrout, T.R. and Zhang, S.J.: Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 113 (2007).CrossRefGoogle Scholar
Kimura, M., Ando, A., Maurya, D., and Priya, S.: Chapter 2-lead zirconate titanate-based piezoceramics. In Advanced Piezoelectric Materials, 2nd ed., Uchino, K., ed. (Woodhead Publishing, Duxford, 2017); p. 95.CrossRefGoogle Scholar
Yan, Y. and Priya, S.: Multiferroic magnetoelectric composites/hybrids. In Hybrid and Hierarchical Composite Materials, Kim, C-S., Randow, C., and Sano, T., eds. (Springer International Publishing, New York, 2015); p. 95.Google Scholar
Rödel, J., Jo, W., Seifert, K.T.P., Anton, E-M., Granzow, T., and Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).CrossRefGoogle Scholar
Takenaka, T., Maruyama, K., and Sakata, K.: (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys., Part 1 30, 2236 (1991).CrossRefGoogle Scholar
Kuharuangrong, S. and Schulze, W.: Compositional modifications of 10%–Pb-doped Bi0.5Na0.5TiO3 for high-temperature dielectrics. J. Am. Ceram. Soc. 78, 2274 (1995).CrossRefGoogle Scholar
Elkechai, O., Manier, M., and Mercurio, J.P.: Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) system: A structural and electrical study. Phys. Status Solidi A 157, 499 (1996).CrossRefGoogle Scholar
Takenaka, T., Sakata, K., and Toda, K.: Piezoelectric properties of (Bi1/2Na1/2)TIO3-based ceramics. Ferroelectrics 106, 375 (1990).CrossRefGoogle Scholar
Marchet, P., Boucher, E., Dorcet, V., and Mercurio, J.P.: Dielectric properties of some low-lead or lead-free perovskite-derived materials: Na0.5Bi0.5TiO3–PbZrO3, Na0.5Bi0.5TiO3–BiScO3 and Na0.5Bi0.5TiO3–BiFeO3 ceramics. J. Eur. Ceram. Soc. 26, 3037 (2006).CrossRefGoogle Scholar
Hajime, N. and Tadashi, T.: Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3–1/2(Bi2O3Sc2O3) system. Jpn. J. Appl. Phys. 36, 6055 (1997).Google Scholar
Nagata, H., Koizumi, N., Kuroda, N., Igarashi, I., and Takenaka, T.: Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3–BaTiO3–BiFeO3 system. Ferroelectrics 229, 273 (1999).CrossRefGoogle Scholar
Li, Y., Chen, W., Zhou, J., Xu, Q., Sun, H., and Xu, R.: Dielectric and piezoelecrtic properties of lead-free (Na0.5Bi0.5)TiO3–NaNbO3 ceramics. Mater. Sci. Eng., B 112, 5 (2004).CrossRefGoogle Scholar
Sung, Y.S., Kim, J.M., Cho, J.H., Song, T.K., Kim, M.H., Chong, H.H., Park, T.G., Do, D., and Kim, S.S.: Effects of Na nonstoichiometry in (Bi0.5Na0.5+x)TiO3 ceramics. Appl. Phys. Lett. 96, 022901 (2010).CrossRefGoogle Scholar
Xu, Q., Huang, D-P., Chen, M., Chen, W., Liu, H-X., and Kim, B-H.: Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3–BaTiO3 composition near the morphotropic phase boundary. J. Alloys Compd. 471, 310 (2009).CrossRefGoogle Scholar
Wang, X.X., Tang, X.G., and Chan, H.L.W.: Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 85, 91 (2004).CrossRefGoogle Scholar
Chu, B-J., Chen, D-R., Li, G-R., and Yin, Q-R.: Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics. J. Eur. Ceram. Soc. 22, 2115 (2002).CrossRefGoogle Scholar
Xu, Q., Chen, M., Chen, W., Liu, H-X., Kim, B-H., and Ahn, B-K.: Effect of CoO additive on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics prepared by the citrate method. Acta Mater. 56, 642 (2008).CrossRefGoogle Scholar
Bichurin, M., Petrov, V., Zakharov, A., Kovalenko, D., Yang, S.C., Maurya, D., Bedekar, V., and Priya, S.: Magnetoelectric interactions in lead-based and lead-free composites. Materials 4, 651 (2011).CrossRefGoogle ScholarPubMed
Takenaka, T., Nagata, H., and Hiruma, Y.: Phase transition temperatures and piezoelectric properties of (Bi1/2Na1/2)TiO3 and (Bi1/2K1/2)TiO3-based bismuth perovskite lead-free ferroelectric ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1595 (2009).CrossRefGoogle Scholar
Wu, J., Xiao, D., and Zhu, J.: Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).CrossRefGoogle ScholarPubMed
Gao, Y., Zhang, J., Qing, Y., Tan, Y., Zhang, Z., and Hao, X.: Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic. J. Am. Ceram. Soc. 94, 2968 (2011).CrossRefGoogle Scholar
Erünal, E., Jakes, P., Körbel, S., Acker, J., Kungl, H., Elsässer, C., Hoffmann, M.J., and Eichel, R-A.: CuO-doped NaNbO3 antiferroelectrics: Impact of aliovalent doping and nonstoichiometry on the defect structure and formation of secondary phases. Phys. Rev. B 84, 184113 (2011).CrossRefGoogle Scholar
Eichel, R-A., Erünal, E., Jakes, P., Körbel, S., Elsässer, C., Kungl, H., Acker, J., and Hoffmann, M.J.: Interactions of defect complexes and domain walls in CuO-doped ferroelectric (K,Na)NbO3. Appl. Phys. Lett. 102, 242908 (2013).CrossRefGoogle Scholar
Cheng, X., Wu, J., Lou, X., Wang, X., Wang, X., Xiao, D., and Zhu, J.: Achieving both giant d 33 and high T C in patassium–sodium niobate ternary system. ACS Appl. Mater. Interfaces 6, 750 (2014).CrossRefGoogle ScholarPubMed
Wang, L., Ren, W., Shi, P., Chen, X., Wu, X., and Yao, X.: Enhanced ferroelectric properties in Mn-doped K0.5Na0.5NbO3 thin films derived from chemical solution deposition. Appl. Phys. Lett. 97, 072902 (2010).CrossRefGoogle Scholar
Goh, P.C., Yao, K., and Chen, Z.: Titanium diffusion into (K0.5Na0.5)NbO3 thin films deposited on Pt/Ti/SiO2/Si substrates and corresponding effects. J. Am. Ceram. Soc. 92, 1322 (2009).CrossRefGoogle Scholar
Wu, S., Zhu, W., Liu, L., Shi, D., Zheng, S., Huang, Y., and Fang, L.: Dielectric properties and defect chemistry of WO3-doped K0.5Na0.5NbO3 ceramics. J. Electron. Mater. 43, 1055 (2014).CrossRefGoogle Scholar
Hagh, N.M., Jadidian, B., Ashbahian, E., and Safari, A.: Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid solution system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 214 (2008).CrossRefGoogle ScholarPubMed
Shinjiro, T. and Kunihiro, N.: Influence of mixing condition and nonstoichiometry on piezoelectric properties of (K,Na,Pb)NbO3 ceram. Jpn. J. Appl. Phys. 43, 6711 (2004).Google Scholar
Peddigari, M., Thota, S., and Pamu, D.: Dielectric and AC-conductivity studies of Dy2O3 doped (K0.5Na0.5)NbO3 ceramics. AIP Adv. 4, 087113 (2014).CrossRefGoogle Scholar
Zhang, S.J. and Li, F.: High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 111, 031301 (2012).CrossRefGoogle Scholar
Park, S.E. and Shrout, T.R.: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).CrossRefGoogle Scholar
Zhang, Q., Zhang, Y., Wang, F., Wang, Y., Lin, D., Zhao, X., Luo, H., Ge, W., and Viehland, D.: Enhanced piezoelectric and ferroelectric properties in Mn-doped Na0.5Bi0.5TiO3–BaTiO3 single crystals. Appl. Phys. Lett. 95, 102904 (2009).CrossRefGoogle Scholar
Sun, R., Zhao, X., Zhang, Q., Fang, B., Zhang, H., Li, X., Lin, D., Wang, S., and Luo, H.: Growth and orientation dependence of electrical properties of 0.92Na0.5Bi0.5TiO3–0.08K0.5Bi0.5TiO3 lead-free piezoelectric single crystal. J. Appl. Phys. 109, 124113 (2011).CrossRefGoogle Scholar
Messing, G.L., Trolier-McKinstry, S., Sabolsky, E.M., Duran, C., Kwon, S., Brahmaroutu, B., Park, P., Yilmaz, H., Rehrig, P.W., Eitel, K.B., Suvaci, E., Seabaugh, M., and Oh, K.S.: Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State 29, 45 (2004).CrossRefGoogle Scholar
Yan, Y.K., Cho, K.H., and Priya, S.: Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)–PbZrO3–PbTiO3 textured ceramics. Appl. Phys. Lett. 100, 132908 (2012).CrossRefGoogle Scholar
Yan, Y.K., Cho, K.H., Maurya, D., Kumar, A., Kalinin, S., Khachaturyan, A., and Priya, S.: Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 102, 042903 (2013).CrossRefGoogle Scholar
Yan, Y., Zhou, Y., and Priya, S.: Enhanced electromechanical coupling in Pb(Mg1/3Nb2/3)O3–PbTiO3 〈001〉C radially textured cylinders. Appl. Phys. Lett. 104, 012910 (2014).CrossRefGoogle Scholar
Maurya, D., Zhou, Y., Yan, Y., and Priya, S.: Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response. J. Mater. Chem. C 1, 2102 (2013).CrossRefGoogle Scholar
Wolf, R.A. and Trolier-McKinstry, S.: Temperature dependence of the piezoelectric response in lead zirconate titanate films. J. Appl. Phys. 95, 1397 (2004).CrossRefGoogle Scholar
Zuo, R., Ye, C., Fang, X., and Li, J.: Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 871 (2008).CrossRefGoogle Scholar
Guo, F-F., Yang, B., Zhang, S-T., Liu, X., Zheng, L-M., Wang, Z., Wu, F-M., Wang, D-L., and Cao, W-W.: Morphotropic phase boundary and electric properties in (1 − x)Bi0.5Na0.5TiO3xBiCoO3 lead-free piezoelectric ceramics. J. Appl. Phys. 111, 124113 (2012).CrossRefGoogle Scholar
Sung, Y.S. and Kim, M.H.: Effects of B-site donor and acceptor doping in Pb-free (Bi0.5Na0.5)TiO3 ceramics. In Ferroelectrics, Coondoo, I., ed. (InTech, London, 2010); p. 450.Google Scholar
Guo, Y., Gu, M., Luo, H., Liu, Y., and Withers, R.L.: Composition-induced antiferroelectric phase and giant strain in lead-free (Nay, Biz)Ti1−xO3(1−x)xBaTiO3 ceramics. Phys. Rev. B 83, 054118 (2011).CrossRefGoogle Scholar
Ge, W., Li, J., Viehland, D., Chang, Y., and Messing, G.L.: Electric-field-dependent phase volume fractions and enhanced piezoelectricity near the polymorphic phase boundary of (K0.5Na0.5)1−xLixNbO3 textured ceramics. Phys. Rev. B 83, 224110 (2011).CrossRefGoogle Scholar
Zhang, S-T., Kounga, A.B., Aulbach, E., Ehrenberg, H., and Rödel, J.: Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).CrossRefGoogle Scholar
Guennou, M., Savinov, M., Drahokoupil, J., Luo, H., and Hlinka, J.: Piezoelectric properties of tetragonal single-domain Mn-doped NBT-6% BT single crystals. Appl. Phys. A 116, 225 (2013).CrossRefGoogle Scholar
Zhang, H., Deng, H., Chen, C., Li, L., Lin, D., Li, X., Zhao, X., Luo, H., and Yan, J.: Chemical nature of giant strain in Mn-doped 0.94(Na0.5Bi0.5)TiO3–0.06BaTiO3 lead-free ferroelectric single crystals. Scr. Mater. 75, 50 (2014).CrossRefGoogle Scholar
Ren, X.: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91 (2004).CrossRefGoogle ScholarPubMed
Wenwei, G., Hong, L., Xiangyong, Z., Bijun, F., Xiaobing, L., Feifei, W., Dan, Z., Ping, Y., Xiaoming, P., Di, L., and Haosu, L.: Crystal growth and high piezoelectric performance of 0.95Na0.5Bi0.5TiO3–0.05BaTiO3 lead-free ferroelectric materials. J. Phys. D: Appl. Phys. 41, 115403 (2008).Google Scholar
Kwon, S., Sabolsky, E.M., Messing, G.L., and Trolier-McKinstry, S.: High strain, 〈001〉 textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics: Templated grain growth and piezoelectric properties. J. Am. Ceram. Soc. 88, 312 (2005).CrossRefGoogle Scholar
Maurya, D., Zhou, Y., Wang, Y., Yan, Y., Li, J., Viehland, D., and Priya, S.: Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3–BaTiO3–Na0.5Bi0.5TiO3 piezoelectric materials. Sci. Rep. 5, 8595 (2015).CrossRefGoogle ScholarPubMed
Yan, Y., Zhou, J.E., Maurya, D., Wang, Y.U., and Priya, S.: Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat. Commun. 7, 13089 (2016).CrossRefGoogle ScholarPubMed
Zhou, J.E., Yan, Y., Priya, S., and Wang, Y.U.: Computational study of textured ferroelectric polycrystals: Dielectric and piezoelectric properties of template-matrix composites. J. Appl. Phys. 121, 024101 (2017).CrossRefGoogle Scholar
Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113 (2002).CrossRefGoogle Scholar
Chen, L.Q.: Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review. J. Am. Ceram. Soc. 91, 1835 (2008).CrossRefGoogle Scholar
Gao, F., Liu, X-C., Zhang, C-S., Cheng, L-H., and Tian, C-S.: Fabrication and electrical properties of textured (Na,K)0.5Bi0.5TiO3 ceramics by reactive-templated grain growth. Ceram. Interfaces 34, 403 (2008).CrossRefGoogle Scholar
Zou, H., Sui, Y., Zhu, X., Liu, B., Xue, J., and Zhang, J.: Texture development and enhanced electromechanical properties in 〈001〉-textured BNT-based materials. Mater. Lett. 184, 139 (2016).CrossRefGoogle Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 84 (2004).CrossRefGoogle ScholarPubMed
Chang, Y., Poterala, S.F., Yang, Z., Trolier-McKinstry, S., and Messing, G.L.: 〈001〉 textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl. Phys. Lett. 95, 232905 (2009).CrossRefGoogle Scholar
Chang, Y., Poterala, S., Yang, Z., and Messing, G.L.: Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics. J. Am. Ceram. Soc. 94, 2494 (2011).CrossRefGoogle Scholar
Hussain, A., Kim, J.S., Song, T.K., Kim, M.H., Kim, W.J., and Kim, S.S.: Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates. Curr. Appl. Phys. 13, 1055 (2013).CrossRefGoogle Scholar
Takao, H., Saito, Y., Aoki, Y., and Horibuchi, K.: Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J. Am. Ceram. Soc. 89, 1951 (2006).CrossRefGoogle Scholar
Li, Y., Hui, C., Wu, M., Li, Y., and Wang, Y.: Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceram. Int. 38, S283 (2012).CrossRefGoogle Scholar
Cho, H.J., Kim, M-H., Song, T.K., Lee, J.S., and Jeon, J-H.: Piezoelectric and ferroelectric properties of textured (Na0.50K0.47Li0.03)(Nb0.8Ta0.2)O3 ceramics by using template grain growth method. J. Electroceram. 30, 72 (2013).CrossRefGoogle Scholar
Hao, J., Ye, C., Shen, B., and Zhai, J.: Enhanced piezoelectric properties of 〈001〉 textured lead-free (KxNa1−x)0.946Li0.054NbO3 ceramics with large strain. Phys. Status Solidi A 209, 1343 (2012).CrossRefGoogle Scholar
Gupta, S., Belianinov, A., Okatan, M.B., Jesse, S., Kalinin, S.V., and Priya, S.: Fundamental limitation to the magnitude of piezoelectric response of 〈001〉pc textured K0.5Na0.5NbO3 ceramic. Appl. Phys. Lett. 104, 172902 (2014).CrossRefGoogle Scholar
Bai, W., Chen, D., Li, P., Shen, B., Zhai, J., and Ji, Z.: Enhanced electromechanical properties in 〈00l〉-textured (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. Ceram. Int. 42, 3429 (2016).CrossRefGoogle Scholar
Ye, S., Fuh, J., Lu, L., Chang, Y-l., and Yang, J-R.: Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. RSC Adv. 3, 20693 (2013).CrossRefGoogle Scholar
Schultheiß, J., Clemens, O., Zhukov, S., von Seggern, H., Sakamoto, W., and Koruza, J.: Effect of degree of crystallographic texture on ferro- and piezoelectric properties of Ba0.85Ca0.15TiO3 piezoceramics. J. Am. Ceram. Soc. 100, 2098 (2017).CrossRefGoogle Scholar
Yang, J., Yang, Q., Li, Y., and Liu, Y.: Growth mechanism and enhanced electrical properties of K0.5Na0.5NbO3-based lead-free piezoelectric single crystals grown by a solid-state crystal growth method. J. Eur. Ceram. Soc. 36, 541 (2016).CrossRefGoogle Scholar
Yang, J., Zhang, F., Yang, Q., Liu, Z., Li, Y., Liu, Y., and Zhang, Q.: Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method. Appl. Phys. Lett. 108, 182904 (2016).CrossRefGoogle Scholar
Song, J., Hao, C., Yan, Y., Zhang, J., Li, L., and Jiang, M.: Enhanced piezoelectric property and microstructure of large CaZrO3-doped Na0.5K0.5NbO3-based single crystal with 20 mm over. Mater. Lett. 204, 19 (2017).CrossRefGoogle Scholar
Jiang, M., Randall, C.A., Guo, H., Rao, G., Tu, R., Gu, Z., Cheng, G., Liu, X., Zhang, J., and Li, Y.: Seed-free solid-state growth of large lead-free piezoelectric single crystals: (Na1/2K1/2)NbO3. J. Am. Ceram. Soc. 98, 2988 (2015).CrossRefGoogle Scholar
Moon, K-S., Rout, D., Lee, H-Y., and Kang, S-J.L.: Solid state growth of Na1/2Bi1/2TiO3–BaTiO3 single crystals and their enhanced piezoelectric properties. J. Cryst. Growth 317, 28 (2011).CrossRefGoogle Scholar
Priya, S.: Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610 (2010).CrossRefGoogle ScholarPubMed
Yan, Y., Cho, K-H., Maurya, D., Kumar, A., Kalinin, S., Khachaturyan, A., and Priya, S.: Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics, Appl. Phys. Lett. 102, 042903 (2013).CrossRefGoogle Scholar
Ahn, C-W., Choi, J-J., Ryu, J., Yoon, W-H., Hahn, B-D., Kim, J-W., Choi, J-H., and Park, D-S.: Composition design rule for energy harvesting devices in piezoelectric perovskite ceramics. Mater. Lett. 141, 323 (2015).CrossRefGoogle Scholar
Holden, A., Singer, P., and Morrison, P.: Crystals and Crystal Growing (Anchor Books-Doubleday, New York, 1960).Google Scholar
Gilman, J.J.: The Art and Science of Growing Crystals (Wiley, New York, 1963).Google Scholar
Lee, H.Y.: 6-Development of high-performance piezoelectric single crystals by using solid-state single crystal growth (SSCG) method. In Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z-G., ed. (Woodhead Publishing, Cambridge, 2008); p. 158.CrossRefGoogle Scholar
Kang, S-J.L., Park, J-H., Ko, S-Y., and Lee, H-Y.: Solid-state conversion of single crystals: The principle and the state-of-the-art. J. Am. Ceram. Soc. 98, 347 (2015).CrossRefGoogle Scholar
Kang, S-J.L.: 15-grain shape and grain growth in a liquid matrix. In Sintering, Kang, Suk-Joong L., ed. (Butterworth-Heinemann, Oxford, 2005); p. 205.CrossRefGoogle Scholar
Ryu, J., Kang, J-E., Zhou, Y., Choi, S-Y., Yoon, W-H., Park, D-S., Choi, J-J., Hahn, B-D., Ahn, C-W., Kim, J-W., Kim, Y-D., Priya, S., Lee, S.Y., Jeong, S., and Jeong, D-Y.: Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 8, 2402 (2015).CrossRefGoogle Scholar
Kang, S.J.L.: Boundary structure-dependent grain growth behavior in polycrystals: Model and principle. Mater. Sci. Forum 753, 377 (2013).CrossRefGoogle Scholar
An, S-M., Yoon, B-K., Chung, S-Y., and Kang, S-J.L.: Nonlinear driving force–velocity relationship for the migration of faceted boundaries. Acta Mater. 60, 4531 (2012).CrossRefGoogle Scholar
Kang, S-J.L., Lee, M-G., and An, S-M.: Microstructural evolution during sintering with control of the interface structure. J. Am. Ceram. Soc. 92, 1464 (2009).CrossRefGoogle Scholar
Jung, S-H. and Kang, S-J.L.: Repetitive grain growth behavior with increasing temperature and grain boundary roughening in a model nickel system. Acta Mater. 69, 283 (2014).CrossRefGoogle Scholar
An, S-M. and Kang, S-J.L.: Boundary structural transition and grain growth behavior in BaTiO3 with Nd2O3 doping and oxygen partial pressure change. Acta Mater. 59, 1964 (2011).CrossRefGoogle Scholar
Yamamoto, T. and Sakuma, T.: Fabrication of barium titanate single crystals by solid-state grain growth. J. Am. Ceram. Soc. 77, 1107 (1994).CrossRefGoogle Scholar
Fisher, J.G., Benčan, A., Kosec, M., Vernay, S., and Rytz, D.: Growth of dense single crystals of potassium sodium niobate by a combination of solid-state crystal growth and hot pressing. J. Am. Ceram. Soc. 91, 1503 (2008).CrossRefGoogle Scholar
Fisher, J.G., Benčan, A., Holc, J., Kosec, M., Vernay, S., and Rytz, D.: Growth of potassium sodium niobate single crystals by solid state crystal growth. J. Cryst. Growth 303, 487 (2007).CrossRefGoogle Scholar
Fisher, J.G., Benčan, A., Bernard, J., Holc, J., Kosec, M., Vernay, S., and Rytz, D.: Growth of (Na, K, Li)(Nb, Ta)O3 single crystals by solid state crystal growth. J. Eur. Ceram. Soc. 27, 4103 (2007).CrossRefGoogle Scholar
Park, J-H., Lee, H-Y., and Kang, S-J.L.: Solid-state conversion of (Na1/2Bi1/2)TiO3–BaTiO3–(K1/2Na1/2)NbO3 single crystals and their piezoelectric properties. Appl. Phys. Lett. 104, 222910 (2014).CrossRefGoogle Scholar
Annapureddy, V., Kim, M., Palneedi, H., Lee, H-Y., Choi, S-Y., Yoon, W-H., Park, D-S., Choi, J-J., Hahn, B-D., Ahn, C-W., Kim, J-W., Jeong, D-Y., and Ryu, J.: Low-loss piezoelectric single-crystal fibers for enhanced magnetic energy harvesting with magnetoelectric composite. Adv. Energy Mater. 6, 1601244 (2016).CrossRefGoogle Scholar
Ko, S-Y., Park, J-H., Kim, I-W., Won, S-S., Chung, S-Y., and Kang, S-J.L.: Improved solid-state conversion and piezoelectric properties of 90Na1/2Bi1/2TiO3–5BaTiO3–5K1/2Na1/2NbO3 single crystals. J. Eur. Ceram. Soc. 37, 407 (2017).CrossRefGoogle Scholar
Park, J-H. and Kang, S-J.L.: Solid-state conversion of (94 − x)(Na1/2Bi1/2)TiO3–6BaTiO3x(K1/2Na1/2)NbO3 single crystals and their enhanced converse piezoelectric properties. AIP Adv. 6, 015310 (2016).CrossRefGoogle Scholar
Palneedi, H., Annapureddy, V., Lee, H-Y., Choi, J-J., Choi, S-Y., Chung, S-Y., Kang, S-J.L., and Ryu, J.: Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals. J. Asian. Ceram. Soc. 5, 36 (2017).CrossRefGoogle Scholar
Hwang, G-T., Yang, J., Yang, S.H., Lee, H-Y., Lee, M., Park, D.Y., Han, J.H., Lee, S.J., Jeong, C.K., Kim, J., Park, K-I., and Lee, K.J.: A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN–PZT. Adv. Energy Mater. 5, 1500051 (2015).CrossRefGoogle Scholar
Hwang, G.T., Byun, M., Jeong, C.K., and Lee, K.J.: Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthcare Mater. 4, 646 (2015).CrossRefGoogle ScholarPubMed
Shi, Q., Wang, T., and Lee, C.: MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci. Rep. 6, 24946 (2016).CrossRefGoogle ScholarPubMed
Zhang, M., Gao, T., Wang, J., Liao, J., Qiu, Y., Yang, Q., Xue, H., Shi, Z., Zhao, Y., Xiong, Z., and Chen, L.: A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application. Nano Energy 13, 298 (2015).CrossRefGoogle Scholar
Collin, R.M. and Collin, R.W.: Energy Choices: How to Power the Future (Praeger, Santa Barbara, 2014).Google Scholar
Roundy, S., Wright, P.K., and Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26, 1131 (2003).CrossRefGoogle Scholar
Rahman, M.F.B.A. and Leong, K.S.: Investigation of useful ambient vibration sources for the application of energy harvesting. In Proceedings of 2011 IEEE Student Conference on Research and Development (SCOReD 2011) (Cyberjaya, 2011); p. 391.CrossRefGoogle Scholar
Galchev, T.V., McCullagh, J., Peterson, R.L., and Najafi, K.: Harvesting traffic-induced vibrations for structural health monitoring of bridges. J. Micromech. Microeng. 21, 104005 (2011).CrossRefGoogle Scholar
Zhou, Y., Apo, D.J., Sanghadasa, M., Bichurin, M., Petrov, V.M., and Priya, S.: 7-Magnetoelectric energy harvester. In Composite Magnetoelectrics, Srinivasan, Gopalan, Priya, Shashank, Sun, Nian X., eds. (Woodhead Publishing, New York, 2015); p. 161.CrossRefGoogle Scholar
Boughey, C. and Kar-Narayan, S.: Energy harvesting. In Magnetoelectric Polymer-Based Composites, Lanceros-Méndez, Senentxu Martins, Pedro, eds. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2017); p. 197.CrossRefGoogle Scholar
Tan, Y.K.: Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation (Taylor & Francis, Boca Raton, 2013).CrossRefGoogle Scholar
Annapureddy, V., Lee, H.Y., Yoon, W-H., Woo, H-J., Lee, J-H., Palneedi, H., Kim, H-J., Choi, J-J., Jeong, D-Y., Yi, S.N., and Ryu, J.: Enhanced magnetic energy harvesting properties of magneto-mechano-electric generator by tailored geometry. Appl. Phys. Lett. 109, 093901 (2016).CrossRefGoogle Scholar
Dong, S., Zhai, J., Li, J.F., Viehland, D., and Priya, S.: Multimodal system for harvesting magnetic and mechanical energy. Appl. Phys. Lett. 93, 103511 (2008).CrossRefGoogle Scholar
Sodano, H.A., Park, G., and Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49 (2004).CrossRefGoogle Scholar
Erturk, A. and Inman, D.J.: Electromechanical modeling of cantilevered piezoelectric energy harvesters for persistent base motions. In Energy Harvesting Technologies, Priya, S. and Inman, D.J., eds. (Springer, New York, 2009).Google Scholar
Sriramdas, R.: Vibrational energy harvesting: Design, performance and scaling analysis. In Centre for Nano Science and Engineering (Indian Institute of Science, Bangalore, 2017).Google Scholar
Sriramdas, R., Chiplunkar, S., Cuduvally, R.M., and Pratap, R.: Performance enhancement of piezoelectric energy harvesters using multilayer and multistep beam configurations. IEEE Sensor. J. 15, 3338 (2015).CrossRefGoogle Scholar
Ma, F.D., Jin, Y.M., Wang, Y.U., Kampe, S.L., and Dong, S.: Phase field modeling and simulation of particulate magnetoelectric composites: Effects of connectivity, conductivity, poling and bias field. Acta Mater. 70, 45 (2014).CrossRefGoogle Scholar
Nan, C-W., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).CrossRefGoogle ScholarPubMed
Yan, X., Zheng, M., Hou, Y., and Zhu, M.: Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic. J. Eur. Ceram. Soc. 37, 2583 (2017).CrossRefGoogle Scholar
Zheng, M., Hou, Y., Yan, X., Zhang, L., and Zhu, M.: A highly dense structure boosts energy harvesting and cycling reliabilities of a high-performance lead-free energy harvester. J. Mater. Chem. C 5, 7862 (2017).CrossRefGoogle Scholar
Akyurekli, A.G., Gurbuz, M., Gul, M., Gulec, H., and Dogan, A.: Energy harvesting potential of lead free NBT–BZT piezoelectric ceramics. In 2014 Joint IEEE International Symposium on the Applications of Ferroelectric, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy (Sate College, Pennsylvania, 2014); p. 1.Google Scholar
Le Van, M., Motoaki, H., Fumimasa, H., Kenji, S., Tomoyoshi, M., and Hiroki, K.: Bulk micromachined energy harvesters employing (K, Na)NbO3 thin film. J. Micromech. Microeng. 23, 035029 (2013).Google Scholar
Takeshi, Y., Shuichi, M., Keisuke, W., Kento, K., and Norifumi, F.: Piezoelectric vibrational energy harvester using lead-free ferroelectric BiFeO 3 films. Appl. Phys. Express 6, 051501 (2013).Google Scholar
Kanno, I., Ichida, T., Adachi, K., Kotera, H., Shibata, K., and Mishima, T.: Power-generation performance of lead-free (K,Na)NbO3 piezoelectric thin-film energy harvesters. Sens. Actuators, A 179, 132 (2012).CrossRefGoogle Scholar
Kim, S.H., Leung, A., Koo, C.Y., Kuhn, L., Jiang, W.Y., Kim, D.J., and Kingon, A.I.: Lead-free (Na0.5K0.5)(Nb0.95Ta0.05)O3–BiFeO3 thin films for MEMS piezoelectric vibration energy harvesting devices. Mater. Lett. 69, 24 (2012).CrossRefGoogle Scholar
Won, S.S., Lee, J., Venugopal, V., Kim, D-J., Lee, J., Kim, I.W., Kingon, A.I., and Kim, S-H.: Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl. Phys. Lett. 108, 232908 (2016).CrossRefGoogle Scholar
Marin, A.: Mechanical Energy Harvesting for Powering Distributed Sensors and Recharging Storage Systems, in Mechanical Engineering (Virginia Polytechnic Institute and State University, Blacksburg, 2013); p. 280.Google Scholar
Sharpes, N., Abdelkefi, A., and Priya, S.: Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters. Appl. Phys. Lett. 107, 093901 (2015).CrossRefGoogle Scholar
Sriramdas, R. and Pratap, R.: Scaling and performance analysis of MEMS piezoelectric energy harvesters. J. Microelectromech. Syst. 26, 679 (2017).CrossRefGoogle Scholar
Wang, X.: Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1, 13 (2012).CrossRefGoogle Scholar
Zhu, G., Yang, R., Wang, S., and Wang, Z.L.: Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10, 3151 (2010).CrossRefGoogle ScholarPubMed
Kim, B-Y., Lee, W-H., Hwang, H-G., Kim, D-H., Kim, J-H., Lee, S-H., and Nahm, S.: Resistive switching memory integrated with nanogenerator for self-powered bioimplantable devices. Adv. Funct. Mater. 26, 5211 (2016).CrossRefGoogle Scholar
Park, K-I., Xu, S., Liu, Y., Hwang, G-T., Kang, S-J.L., Wang, Z.L., and Lee, K.J.: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939 (2010).CrossRefGoogle ScholarPubMed
Jeong, C.K., Han, J.H., Palneedi, H., Park, H., Hwang, G-T., Joung, B., Kim, S-G., Shin, H.J., Kang, I-S., Ryu, J., and Lee, K.J.: Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 5, 74102 (2017).CrossRefGoogle Scholar
Kim, B-Y., Seo, I-T., Lee, Y-S., Kim, J-S., Nahm, S., Kang, C-Y., Yoon, S-J., Paik, J-H., and Jeong, Y-H.: High-performance (Na0.5K0.5)NbO3 thin film piezoelectric energy harvester. J. Am. Ceram. Soc. 98, 119 (2015).CrossRefGoogle Scholar
Gupta, M.K., Kim, S-W., and Kumar, B.: Flexible high-performance lead-free Na0.47K0.47Li0.06NbO3 microcube-structure-based piezoelectric energy harvester. ACS Appl. Mater. Interfaces 8, 1766 (2016).CrossRefGoogle ScholarPubMed
Zhao, Y.L., Liao, Q.L., Zhang, G.J., Zhang, Z., Liang, Q.J., Liao, X.Q., and Zhang, Y.: High output piezoelectric nanocomposite generators composed of oriented BaTiO3NPs@PVDF. Nano Energy 11, 719 (2015).CrossRefGoogle Scholar
Jeong, C.K., Park, K.I., Ryu, J., Hwang, G.T., and Lee, K.J.: Large-area and flexible lead-free nanocomposite generator using alkaline niobate particles and metal nanorod filler. Adv. Funct. Mater. 24, 2620 (2014).CrossRefGoogle Scholar
Baek, C., Yun, J.H., Wang, J.E., Jeong, C.K., Lee, K.J., Park, K.I., and Kim, D.K.: A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle-polymer composite. Nanoscale 8, 17632 (2016).CrossRefGoogle ScholarPubMed
Jeong, C.K., Kim, I., Park, K-I., Oh, M.H., Paik, H., Hwang, G-T., No, K., Nam, Y.S., and Lee, K.J.: Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 7, 11016 (2013).CrossRefGoogle ScholarPubMed
Deutz, D.B., Mascarenhas, N.T., Schelen, J.B.J., de Leeuw, D.M., van der Zwaag, S., and Groen, P.: Flexible piezoelectric touch sensor by alignment of lead-free alkaline niobate microcubes in PDMS. Adv. Funct. Mater. 27, 1700728 (2017).CrossRefGoogle Scholar
Joung, M.R., Xu, H.B., Seo, I.T., Kim, D.H., Hur, J., Nahm, S., Kang, C.Y., Yoon, S.J., and Park, H.M.: Piezoelectric nanogenerators synthesized using KNbO3 nanowires with various crystal structures. J. Mater. Chem. A 2, 18547 (2014).CrossRefGoogle Scholar
Xu, B., Chakraborty, H., Remsing, R.C., Klein, M.L., and Ren, S.: A free-standing molecular spin–charge converter for ubiquitous magnetic-energy harvesting and sensing. Adv. Mater. 29, 1605150 (2017).CrossRefGoogle ScholarPubMed
Gao, M., Li, L., Li, W., Zhou, H., and Song, Y.: Direct writing of patterned, lead-free nanowire aligned flexible piezoelectric device. Adv. Sci. 3, 1600120 (2016).CrossRefGoogle ScholarPubMed
Lee, B.Y., Zhang, J.X., Zueger, C., Chung, W.J., Yoo, S.Y., Wang, E., Meyer, J., Ramesh, R., and Lee, S.W.: Virus-based piezoelectric energy generation. Nat. Nanotechnol. 7, 351 (2012).CrossRefGoogle ScholarPubMed
Williams, W.S., Breger, L., and Johnson, M.: Piezoelectric response of bone. Bull. Am. Phys. Soc. 18, 320 (1973).Google Scholar
Alam, M.M. and Mandal, D.: Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl. Mater. Interfaces 8, 1555 (2016).CrossRefGoogle ScholarPubMed
Fashandi, H., Abolhasani, M.M., Sandoghdar, P., Zohdi, N., Li, Q.X., and Naebe, M.: Morphological changes towards enhancing piezoelectric properties of PVDF electrical generators using cellulose nanocrystals. Cellulose 23, 3625 (2016).CrossRefGoogle Scholar
Koka, A., Zhou, Z., Tang, H.X., and Sodano, H.A.: Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 25, 375603 (2014).CrossRefGoogle ScholarPubMed
He, Y.H., Wang, Z., Hu, X.K., Cai, Y.X., Li, L.Y., Gao, Y.H., Zhang, X.H., Huang, Z.B., Hu, Y.M., and Gu, H.S.: Orientation-dependent piezoresponse and high-performance energy harvesting of lead-free (K,Na)NbO3 nanorod arrays. RSC Adv. 7, 16908 (2017).CrossRefGoogle Scholar
Kang, P.G., Yun, B.K., Sung, K.D., Lee, T.K., Lee, M., Lee, N., Oh, S.H., Jo, W., Seog, H.J., Ahn, C.W., Kim, I.W., and Jung, J.H.: Piezoelectric power generation of vertically aligned lead-free (K,Na)NbO3 nanorod arrays. RSC Adv. 4, 29799 (2014).CrossRefGoogle Scholar
Fan, H.H., Jin, C.C., Wang, Y., Hwang, H.L., and Zhang, Y.F.: Structural of BCTZ nanowires and high performance BCTZ-based nanogenerator for biomechanical energy harvesting. Ceram. Int. 43, 5875 (2017).CrossRefGoogle Scholar
Tsege, E.L., Kim, G.H., Annapureddy, V., Kim, B., Kim, H.K., and Hwang, Y.H.: A flexible lead-free piezoelectric nanogenerator based on vertically aligned BaTiO3 nanotube arrays on a Ti-mesh substrate. RSC Adv. 6, 81426 (2016).CrossRefGoogle Scholar
Liu, G., Ci, P., and Dong, S.: Energy harvesting from ambient low-frequency magnetic field using magneto-mechano-electric composite cantilever. Appl. Phys. Lett. 104, 32908 (2014).CrossRefGoogle Scholar
Han, J., Hu, J., Wang, Z., Wang, S.X., and He, J.: Enhanced performance of magnetoelectric energy harvester based on compound magnetic coupling effect. J. Appl. Phys. 117, 144502 (2015).CrossRefGoogle Scholar
Kambale Rahul, C., Kang, J-E., Yoon, W-H., Park, D-S., Choi, J-J., Ahn, C-W., Kim, J-W., Hahn, B-D., Jeong, D-Y., Kim, Y-D., Dong, S., and Ryu, J.: Magneto-mechano-electric (MME) energy harvesting properties of piezoelectric macro-fiber composite/Ni magnetoelectric generator. Energy Harvest. Syst. 1, 3 (2014).Google Scholar
Lasheras, A., Gutierrez, J., Sousa, D., Silva, M., Martins, P., Lanceros-Mendez, S., Barandiaran, J.M., Shishkin, D.A., and Potapov, A.P.: Energy harvesting device based on a metallic glass/PVDF magnetoelectric laminated composite. Smart Mater. Struct. 24, 65024 (2015).CrossRefGoogle Scholar
Song, H-C., Kim, H-C., Kang, C-Y., Kim, H-J., Yoon, S-J., and Jeong, D-Y.: Multilayer piezoelectric energy scavenger for large current generation. J. Electroceram. 23, 301 (2009).CrossRefGoogle Scholar
Roundy, S. and Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13, 1131 (2004).CrossRefGoogle Scholar
Gongora-Rubio, M.R., Espinoza-Vallejos, P., Sola-Laguna, L., and Santiago-Avilés, J.J.: Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens. Actuators, A 89, 222 (2001).CrossRefGoogle Scholar
Yan, Y., Marin, A., Zhou, Y., and Priya, S.: Enhanced vibration energy harvesting through multilayer textured Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 piezoelectric ceramics. Energy Harvest. Syst. 1, 189 (2014).Google Scholar
Evans, M., Aw, K., and Tang, L.: Low frequency energy harvesting using a force amplified piezoelectric stack. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (Munich, 2017); p. 1568.Google Scholar
Remick, K., Dane Quinn, D., Michael McFarland, D., Bergman, L., and Vakakis, A.: High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. J. Sound Vib. 370, 259 (2016).CrossRefGoogle Scholar
Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 167 (2007).CrossRefGoogle Scholar
Sharpes, N., Vučković, D., and Priya, S.: Floor tile energy harvester for self-powered wireless occupancy sensing. Energy Harvest. Syst. 3, 43 (2016).Google Scholar
East Japan Railway Company: Demonstration Experiment of the “Power-Generating Floor” at Tokyo Station, Chiyoda, 2008; p. 3.Google Scholar
Erturk, A. and Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009).CrossRefGoogle Scholar
Shu, Y. and Lien, I.: Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499 (2006).CrossRefGoogle Scholar
Harne, R. and Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013).CrossRefGoogle Scholar
Zhu, D., Tudor, M.J., and Beeby, S.P.: Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas. Sci. Technol. 21, 022001 (2010).CrossRefGoogle Scholar
Sharpes, N., Abdelkefi, A., and Priya, S.: Comparative analysis of one-dimensional and two-dimensional cantilever piezoelectric energy harvesters. Energy Harvest. Syst. 1, 209 (2014).Google Scholar
Apo, D.J., Sanghadasa, M., and Priya, S.: Low frequency arc-based MEMS structures for vibration energy harvesting. In 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (IEEE, Suzhou, 2013); p. 615.CrossRefGoogle Scholar
Berdy, D., Jung, B., Rhoads, J., and Peroulis, D.: Increased-bandwidth, meandering vibration energy harvester. In 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS) (IEEE, Beijing, 2011); p. 2638.Google Scholar
Karami, M.A., Yardimoglu, B., and Inman, D.: Coupled out of plane vibrations of spiral beams. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (The American Institute of Aeronautics and Astronautics, Inc., Reston, VA, 2009).Google Scholar
Apo, D.J., Sanghadasa, M., and Priya, S.: Vibration modeling of arc-based cantilevers for energy harvesting applications. Energy Harvest. Syst. 1, 1 (2014).Google Scholar
Berdy, D.F., Jung, B., Rhoads, J.F., and Peroulis, D.: Wide-bandwidth, meandering vibration energy harvester with distributed circuit board inertial mass. Sens. Actuators, A 188, 148 (2012).CrossRefGoogle Scholar
Hu, H., Xue, H., and Hu, Y.: A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1177 (2007).CrossRefGoogle ScholarPubMed
Hu, Y. and Xu, Y.: A wideband vibration energy harvester based on a folded asymmetric gapped cantilever. Appl. Phys. Lett. 104, 053902 (2014).CrossRefGoogle Scholar
Karami, A.M. and Inman, D.J.: Parametric study of zigzag microstructure for vibrational energy harvesting. J. Microelectromech. Syst. 21, 145 (2012).CrossRefGoogle Scholar
Karami, M.A. and Inman, D.J.: Electromechanical modeling of the low-frequency zigzag micro-energy harvester. J. Intell. Mater. Syst. Struct. 22, 271 (2011).CrossRefGoogle Scholar
Chen, X., Wu, J., Cheng, X., Wu, B., Wu, W., Xiao, D., and Zhu, J.: Piezoelectric properties of [Li0.03(K0.48Na0.52)0.97](Nb0.97Sb0.03)O3–(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 12, 752 (2012).CrossRefGoogle Scholar
Wu, H., Tang, L., Yang, Y., and Soh, C.K.: A novel two-degrees-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 24, 357 (2013).CrossRefGoogle Scholar
Abdelmoula, H., Sharpes, N., Abdelkefi, A., Lee, H., and Priya, S.: Low-frequency zigzag energy harvesters operating in torsion-dominant mode. Appl. Energy 204, 413 (2017).CrossRefGoogle Scholar
Sharpes, N., Abdelkefi, A., Hajj, M., Heo, J., Cho, K-H., and Priya, S.: Preloaded freeplay wide-bandwidth low-frequency piezoelectric harvesters. Appl. Phys. Lett. 107, 023902 (2015).CrossRefGoogle Scholar
Frank, G. and Peter, W.: Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng. 18, 104013 (2008).Google Scholar
Friswell, M.I. and Adhikari, S.: Sensor shape design for piezoelectric cantilever beams to harvest vibration energy. J. Appl. Phys. 108, 014901 (2010).CrossRefGoogle Scholar
Benasciutti, D., Moro, L., Zelenika, S., and Brusa, E.: Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst. Technol. 16, 657 (2010).CrossRefGoogle Scholar
Roundy, S.: On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16, 809 (2005).CrossRefGoogle Scholar
Zhu, D., Almusallam, A., Beeby, S.P., Tudor, J., and Harris, N.R.: A bimorph multi-layer piezoelectric vibration energy harvester. In PowerMEMS (Leuven, 2010); p. 335.Google Scholar
Lanceros-Mendez, S.R., Silva, M.P., Castro, N., Correia, V., Rocha, J.G., Martins, P., Lasheras, A., and Gutierrez, J.: Electronic optimization for an energy harvesting system based on magnetoelectric metglas/poly(vinylidene fluoride)/metglas composites. Smart Mater. Struct. 25, 85028 (2016).Google Scholar