Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T23:36:59.326Z Has data issue: false hasContentIssue false

Laser additive manufacturing of powdered bismuth telluride

Published online by Cambridge University Press:  06 November 2018

Haidong Zhang*
Affiliation:
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, USA
Dean Hobbis
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620, USA
George S. Nolas
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Saniya LeBlanc*
Affiliation:
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Traditional manufacturing methods restrict the expansion of thermoelectric technology. Here, we demonstrate a new manufacturing approach for thermoelectric materials. Selective laser melting, an additive manufacturing technique, is performed on loose thermoelectric powders for the first time. Layer-by-layer construction is realized with bismuth telluride, Bi2Te3, and an 88% relative density was achieved. Scanning electron microscopy results suggest good fusion between each layer although multiple pores exist within the melted region. X-ray diffraction results confirm that the Bi2Te3 crystal structure is preserved after laser melting. Temperature-dependent absolute Seebeck coefficient, electrical conductivity, specific heat, thermal diffusivity, thermal conductivity, and dimensionless thermoelectric figure of merit ZT are characterized up to 500 °C, and the bulk thermoelectric material produced by this technique has comparable thermoelectric and electrical properties to those fabricated from traditional methods. The method shown here may be applicable to other thermoelectric materials and offers a novel manufacturing approach for thermoelectric devices.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Goldsmid, H.J. and Douglas, R.W.: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386 (1954).CrossRefGoogle Scholar
Nolas, G.S., Cohn, J.L., Slack, G.A., and Schujman, S.B.: Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178 (1998).CrossRefGoogle Scholar
Nolas, G.S., Morelli, D.T., and Tritt, T.M.: Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29, 89 (1999).CrossRefGoogle Scholar
Purkayastha, A., Lupo, F., Kim, S., Borca-Tasciuc, T., and Ramanath, G.: Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods. Adv. Mater. 18, 496 (2006).CrossRefGoogle Scholar
Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J-P., and Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
Tritt, T.M.: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011).CrossRefGoogle Scholar
Tang, Y., Hanus, R., Chen, S., and Snyder, G.J.: Solubility design leading to high figure of merit in low-cost Ce–CoSb3 skutterudites. Nat. Commun. 6, 7584 (2015).CrossRefGoogle ScholarPubMed
Beekman, M., Morelli, D.T., and Nolas, G.S.: Better thermoelectrics through glass-like crystals. Nat. Mater. 14, 1182 (2015).CrossRefGoogle ScholarPubMed
Dörling, B., Ryan, J.D., Craddock, J.D., Sorrentino, A., El Basaty, A., Gomez, A., Garriga, M., Pereiro, E., Anthony, J.E., Weisenberger, M.C., Goñi, A.R., Müller, C., and Campoy-Quiles, M.: Photoinduced p- to n-type switching in thermoelectric polymer-carbon nanotube composites. Adv. Mater. 28, 2782 (2016).CrossRefGoogle ScholarPubMed
Hermes, C.J.L. and Barbosa, J.R. Jr.: Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers. Appl. Energy 91, 51 (2012).CrossRefGoogle Scholar
Karri, M.A., Thacher, E.F., and Helenbrook, B.T.: Exhaust energy conversion by thermoelectric generator: Two case studies. Energy Convers. Manage. 52, 1596 (2011).CrossRefGoogle Scholar
LeBlanc, S.: Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustainable Mater. Technol. 1–2, 26 (2014).CrossRefGoogle Scholar
Ioffe, A.F., Stil’bans, L.S., Iordanishvili, E.K., Stavitskaya, T.S., Gelbtuch, A., and Vineyard, G.: Semiconductor thermoelements and thermoelectric cooling. Phys. Today 12, 42 (1959).CrossRefGoogle Scholar
Harman, T.C., Taylor, P.J., Spears, D.L., and Walsh, M.P.: Thermoelectric quantum-dot superlattices with high ZT. J. Electron. Mater. 29, L1 (2000).CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).CrossRefGoogle ScholarPubMed
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., and Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008).CrossRefGoogle ScholarPubMed
Zhang, G., Yu, Q., Wang, W., and Li, X.: Nanostructures for thermoelectric applications: Synthesis, growth mechanism, and property studies. Adv. Mater. 22, 1959 (2010).CrossRefGoogle ScholarPubMed
Nielsch, K., Bachmann, J., Kimling, J., and Böttner, H.: Thermoelectric nanostructures: From physical model systems towards nanograined composites. Adv. Energy Mater. 1, 713 (2011).CrossRefGoogle Scholar
Pennelli, G.: Review of nanostructured devices for thermoelectric applications. Beilstein J. Nanotechnol. 5, 1268 (2014).CrossRefGoogle ScholarPubMed
Deckard, C.R.: U.S. Patent No. US4863538 A, Method and apparatus for producing parts by selective sintering (1986).Google Scholar
Gu, D.D., Meiners, W., Wissenbach, K., and Poprawe, R.: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 57, 133 (2012).CrossRefGoogle Scholar
Schmid, M., Amado, A., and Wegener, K.: Materials perspective of polymers for additive manufacturing with selective laser sintering. J. Mater. Res. 29, 1824 (2014).CrossRefGoogle Scholar
Zocca, A., Colombo, P., Gomes, C.M., and Günster, J.: Additive manufacturing of ceramics: Issues, potentialities, and opportunities. J. Am. Ceram. Soc. 98, 1983 (2015).CrossRefGoogle Scholar
Yap, C.Y., Chua, C.K., Dong, Z.L., Liu, Z.H., Zhang, D.Q., Loh, L.E., and Sing, S.L.: Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2, 041101 (2015).CrossRefGoogle Scholar
El-Desouky, A., Read, A.L., Bardet, P.M., Andre, M., and Leblanc, S.: Selective laser melting of a bismuth telluride thermoelectric materials. In Proc Solid Free Symp, Bourell, D., ed. (Solid Freeform Fabrication Symposium, Austin, Texas, 2015), pp. 10431050.Google Scholar
El-Desouky, A., Carter, M., Andre, M.A., Bardet, P.M., and LeBlanc, S.: Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices. Mater. Lett. 185, 598 (2016).CrossRefGoogle Scholar
El-Desouky, A., Carter, M., Mahmoudi, M., Elwany, A., and LeBlanc, S.: Influences of energy density on microstructure and consolidation of selective laser melted bismuth telluride thermoelectric powder. J. Manuf. Process. 25, 411 (2017).CrossRefGoogle Scholar
Mao, Y., Yan, Y., Wu, K., Xie, H., Xiu, Z., Yang, J., Zhang, Q., Uher, C., and Tang, X.: Non-equilibrium synthesis and characterization of n-type Bi2Te2.7Se0.3 thermoelectric material prepared by rapid laser melting and solidification. RSC Adv. 7, 21439 (2017).CrossRefGoogle Scholar
Wu, K., Yan, Y., Zhang, J., Mao, Y., Xie, H., Yang, J., Zhang, Q., Uher, C., and Tang, X.: Preparation of n-type Bi2Te3 thermoelectric materials by non-contact dispenser printing combined with selective laser melting. Phys. Status Solidi RRL 11, 1700067 (2017).CrossRefGoogle Scholar
Yan, Y., Ke, H., Yang, J., Uher, C., and Tang, X.: Fabrication and thermoelectric properties of n-type CoSb2.85Te0.15 using selective laser melting. ACS Appl. Mater. Interfaces 10, 13669 (2018).CrossRefGoogle ScholarPubMed
Kim, F., Kwon, B., Eom, Y., Lee, J.E., Park, S., Jo, S., Park, S.H., Kim, B-S., Im, H.J., Lee, M.H., Min, T.S., Kim, K.T., Chae, H.G., King, W.P., and Son, J.S.: 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 3, 301 (2018).CrossRefGoogle Scholar
Goldsmid, H.J.: Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7, 2577 (2014).CrossRefGoogle ScholarPubMed
Sehr, R. and Testardi, L.R.: The optical properties of p-type Bi2Te3–Sb2Te3 alloys between 2–15 microns. J. Phys. Chem. Solids 23, 1219 (1962).CrossRefGoogle Scholar
Zhang, H., Liu, C-X., Qi, X-L., Dai, X., Fang, Z., and Zhang, S-C.: Topological insulators in Bi2Se3, Bi2Te3, and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
Martin, J., Erickson, S., Nolas, G.S., Alboni, P., Tritt, T.M., and Yang, J.: Structural and transport properties of Ba8Ga16SixGe30−x clathrates. J. Appl. Phys. 99, 044903 (2006).CrossRefGoogle Scholar
Martin, J. and Nolas, G.S.: Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K. Rev. Sci. Instrum. 87, 015105 (2016).CrossRefGoogle ScholarPubMed
Ho, H.C.H., Gilbson, I., and Cheung, W.L.: Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J. Mater. Process. Technol. 89–90, 204 (1999).CrossRefGoogle Scholar
Wilkes, J., Hagedorn, Y., Meiners, W., and Wissenbach, K.: Additive manufacturing of ZrO2–Al2O3 ceramic components by selective laser melting. Rapid Prototyp. J. 19, 51 (2013).CrossRefGoogle Scholar
Bertrand, P., Bayle, F., Combe, C., Goeuriot, P., and Smurov, I.: Ceramic components manufacturing by selective laser sintering. Appl. Surf. Sci. 254, 989 (2007).CrossRefGoogle Scholar
Liu, L.X., Marziano, I., Bentham, A.C., Litster, J.D., White, E.T., and Howes, T.: Effect of particle properties on the flowability of ibuprofen powders. Int. J. Pharm. 362, 109 (2008).CrossRefGoogle ScholarPubMed
Batista, N., El-Desouky, A., Crandall, J., Wang, S., Yang, J., and LeBlanc, S.: Informatics, Electron. Microsystems (TechConnect Briefs, Washington, District of Columbia, 2017); pp. 166169.Google Scholar
Haynes, W.M.: CRC Handbook of Chemistry and Physics, 95th ed. (CRC Press, Boca Raton, FL, 2014); pp. 452.Google Scholar
Kempen, K., Thijs, L., Yasa, E., Badrossamay, M., Verheecke, W., and Kruth, J-P.: Process optimization and microstructural analysis for selective laser melting of AlSi10Mg. Solid Freeform Fabr. Symp. Proc. 22, 484 (2011).Google Scholar
Monroy, K., Delgado, J., and Ciurana, J.: Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process. Procedia Eng. 63, 361 (2013).CrossRefGoogle Scholar
Katayama, S., Kawahito, Y., and Mizutani, M.: Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Phys. Procedia 5, 9 (2010).CrossRefGoogle Scholar
Lee, J.Y., Ko, S.H., Farson, D.F., and Yoo, C.D.: Mechanism of keyhole formation and stability in stationary laser welding. J. Phys. D: Appl. Phys. 35, 1570 (2002).CrossRefGoogle Scholar
Satterthwaite, C.B. and Ure, R.W.: Electrical and thermal properties of Bi2Te3. Phys. Rev. 108, 1164 (1957).CrossRefGoogle Scholar
Zhao, L.D., Zhang, B-P., Li, J-F., Zhang, H.L., and Liu, W.S.: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10, 651 (2008).CrossRefGoogle Scholar
Saleemi, M., Toprak, M.S., Li, S., Johnsson, M., Muhammed, M., Chen, G., Gatti, C., Zhang, Y., Rowe, M., Muhammed, M., Chen, X.Y., Liu, J.M., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). J. Mater. Chem. 22, 725 (2012).CrossRefGoogle Scholar
Euvananont, C., Jantaping, N., and Thanachayanont, C.: Effects of composition and preferred orientation on microstructure and thermoelectric properties of p-type (BixSb(1−x))2Te3 alloys. Curr. Appl. Phys. 11, S246 (2011).CrossRefGoogle Scholar
Goldsmid, H.J.: The electrical conductivity and thermoelectric power of bismuth telluride. Proc. Phys. Soc. 71, 633 (1958).CrossRefGoogle Scholar
Zou, H., Rowe, D.M., and Min, G.: Growth of p- and n-type bismuth telluride thin films by co-evaporation. J. Cryst. Growth 222, 82 (2001).CrossRefGoogle Scholar
Goncalves, L.M., Alpuim, P., Min, G., Rowe, D.M., Couto, C., and Correia, J.H.: Optimization of Bi2Te3 and Sb2Te3 thin films deposited by co-evaporation on polyimide for thermoelectric applications. Vacuum 82, 1499 (2008).CrossRefGoogle Scholar
Kim, J-H., Choi, J-Y., Bae, J-M., Kim, M-Y., and Oh, T-S.: Thermoelectric characteristics of n-type Bi2Te3 and p-type Sb2Te3 thin films prepared by co-evaporation and annealing for thermopile sensor applications. Mater. Trans. 54, 618 (2013).CrossRefGoogle Scholar
Vasenin, F.I.: Termoelektricheskie svoistva splavov sistemy vismut-tellur. Zh. Tekh. Fiz. 25, 397 (1955).Google Scholar
Ainsworth, L.: Single crystal bismuth telluride. Proc. Phys. Soc., London, Sect. B 69, 606 (1956).CrossRefGoogle Scholar
Nolas, G.S., Sharp, J., and Goldsmid, H.J.: Thermoelectrics: Basic Principles and New Materials Developments (Springer-Verlag Berlin Heidelberg, Berlin, Germany, 2001).CrossRefGoogle Scholar
Schultz, J.M., McHugh, J.P., and Tiller, W.A.: Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J. Appl. Phys. 33, 2443 (1962).CrossRefGoogle Scholar
George, W.R., Sharples, R., and Thompson, J.E.: The sintering of bismuth telluride. Proc. Phys. Soc. 74, 768 (1959).CrossRefGoogle Scholar
Bernard, R.G.: Processes involved in sintering. Powder Metall. 2, 86 (1959).CrossRefGoogle Scholar
Miller, G.R. and Li, C-Y.: Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26, 173 (1965).CrossRefGoogle Scholar
Horák, J., Čermák, K., and Koudelka, L.: Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals. J. Phys. Chem. Solids 47, 805 (1986).CrossRefGoogle Scholar
Horák, J., Navrátil, J., and Starý, Z.: Lattice point defects and free-carrier concentration in Bi2+xTe3 and Bi2+xSe3 crystals. J. Phys. Chem. Solids 53, 1067 (1992).CrossRefGoogle Scholar
Lošt’ák, P., Drašar, Č., Bachan, D., Beneš, L., and Krejčová, A.: Defects in Bi2Te3−xSex single crystals. Radiat. Eff. Defects Solids 165, 211 (2010).CrossRefGoogle Scholar
Bludská, J., Jakubec, I., Drašar, Č., Lošťák, P., and Horák, J.: Structural defects in Cu-doped Bi2Te3 single crystals. Philos. Mag. 87, 325 (2007).CrossRefGoogle Scholar
Drasar, C., Lostak, P., and Uher, C.: Doping and defect structure of tetradymite-type crystals. J. Electron. Mater. 39, 2162 (2010).CrossRefGoogle Scholar
Hashibon, A. and Elsässer, C.: First-principles density functional theory study of native point defects in Bi2Te3. Phys. Rev. B 84, 144117 (2011).CrossRefGoogle Scholar
Kim, D-H. and Lee, G-H.: Effect of rapid thermal annealing on thermoelectric properties of bismuth telluride films grown by co-sputtering. Mater. Sci. Eng., B 131, 106 (2006).CrossRefGoogle Scholar
Wright, D.A.: Thermoelectric properties of bismuth telluride and its alloys. Nature 181, 834 (1958).CrossRefGoogle Scholar
Supplementary material: PDF

Zhang et al. supplementary material

Table S1

Download Zhang et al. supplementary material(PDF)
PDF 53.7 KB