Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T11:50:22.922Z Has data issue: false hasContentIssue false

L12- and L10-like cation-ordered structures in ZrO2–Y2O3 ceramics

Published online by Cambridge University Press:  31 January 2011

J. C. Rao*
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China and Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
Y. Zhou
Affiliation:
School of Materials Science and Engineering, Harbin 15001, People's Republic of China
D. X. Li
Affiliation:
Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
*
a)All correspondence should be addressed to this author. e-mial: [email protected] or [email protected]
Get access

Abstract

Y0.25Zr0.75O2−x and Y0.5Zr0.5O2−y phases, with L12- and L10- like cation-ordered structures, respectively, have been found in ZrO2–Y2O3 ceramics in both the sintered and annealed states. High-resolution electron microscopy, energy-dispersive x-ray spectroscopy and computer simulation have been used to reveal the presence of the phases. The formation of Y0.25Zr0.75O2−x and Y0.5Zr0.5O2−y phases was initiated during the sintering procedure and developed with the increase in annealing temperature and time. Segregation of yttrium, which was prevalent in different regions even within one grain, induced the formation of Y0.25Zr0.75O2−x and Y0.5Zr0.5O2−y phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, H.G., J. Mater. Sci. 10, 1527 (1975).CrossRefGoogle Scholar
2.Hannink, R.H.J., J. Mater. Sci. 13, 2487 (1978).CrossRefGoogle Scholar
3.Marder, J.M., Mitchell, T.E., and Heuer, A.H., Acta Metall. 31, 387 (1983).CrossRefGoogle Scholar
4.Sakuma, T., Yoshizawa, Y., and Suto, H., J. Mater. Sci. 20, 1085 (1985).CrossRefGoogle Scholar
5.Sakuma, T., Yoshizawa, Y., and Suto, H., J. Mater. Sci. 21, 1436 (1986).CrossRefGoogle Scholar
6.Hayakawa, M., Adachi, K., and Oka, M., Acta Metall. Mater. 38, 1761 (1990).Google Scholar
7.Zhou, Y., Lei, T.Q., and Sakuma, T., J. Am. Ceram. Soc. 74, 633 (1991).CrossRefGoogle Scholar
8.Doi, Minoru and Miyazaki, Toru, Phil. Mag. B 68, 305 (1993).CrossRefGoogle Scholar
9.Katamura, J., Shibata, N., Ikuhara, Y., and Sakuma, T., Phil. Mag. Lett. 78, 45 (1998).CrossRefGoogle Scholar
10.Carter, R.E. and Roth, W.L., Electromotive Force Measurements in High-Temperature Systems, edited by Alock, C.B. (Institute of Mining and Metallurgy, London, 1968), p. 125.Google Scholar
11.Steele, D. and Fender, B.E., J. Phys. C: Solid State Phys. 7, 1 (1974).Google Scholar
12.Faber, J. Jr., Mueller, M.H., and Cooper, B.R., Phys. Rev. B 17, 4884 (1978).CrossRefGoogle Scholar
13.Morinaga, M., Cohen, J.B., and Faber, J. Jr., Acta Crystallogr. A 35, 789 (1979).CrossRefGoogle Scholar
14.Horiuchi, H., Schultz, A.J., Leung, P.C.W., and Williams, J.M., Acta Crystallogr. B 40, 367 (1984).CrossRefGoogle Scholar
15.Catlow, C.R.A., Chadwick, A.V., Greaves, G.N., and Moroney, L.M., J. Am. Ceram. Soc. 69, 272 (1986).CrossRefGoogle Scholar
16.Howard, C.J., Hill, R.J., and Reichert, B.E., Acta Cryst. B 44, 116 (1988).CrossRefGoogle Scholar
17.Howard, C.J. and Hill, R.J., J. Mater. Sci. 26, 127 (1991).CrossRefGoogle Scholar
18.Torng, S., Miyazawa, K., Suzuki, K., and Sakuma, T., Phil. Mag. A 70, 505 (1994).CrossRefGoogle Scholar
19.McClellan, K.J., Xiao, S.Q., Lanerlof, K.P.D., and Heuer, A.H., Phil. Mag. A 70, 185 (1994).CrossRefGoogle Scholar
20.Williams, David B. and Barry Carter, C., Transmission Electron Microscopy (Plenum Press, New York, 1996), p. 597.CrossRefGoogle Scholar
21.Stadelmann, P.A., Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
22.Welberry, T.R., Withers, R.L., Tompson, J.G., and Butler, B.D., J. Solid State Chem 100, 71 (1992).CrossRefGoogle Scholar
23.Welberry, T.R., Butler, B.D., Tompson, J.G., and Withers, R.L., J. Solid State Chem. 106, 461 (1993).Google Scholar
24.Withers, R.L., Tompson, J.G., Gabbitas, N., Wallenberg, L.R., and Welberry, T.R., J. Solid State Chem. 120, 290 (1995).CrossRefGoogle Scholar
25.Li, P., Chen, I.W., and Penner-Hahn, J.E., Phys. Rev. B 48, 10074 (1993).Google Scholar
26.Lorenz, G., Frey, F., Schulz, H., and Boysen, H., Solid State Ionics 28–30, 497 (1988).CrossRefGoogle Scholar
27.Argyriou, D.N., Elcombe, M.M., and Larson, A.C., J. Phys. Chem. Solids 57, 183 (1996).Google Scholar