Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T12:22:44.691Z Has data issue: false hasContentIssue false

Kinetics and mechanism of low-temperature internal oxidation of Ag–2 and 4 at.% Mg alloys

Published online by Cambridge University Press:  31 January 2011

M. O. Rikel*
Affiliation:
P. N. Lebedev Physical Institute, Russian Academy of Sciences, Leninskii prospekt 53, Moscow 117924, Russia
W. Goldacker*
Affiliation:
Institut für Technische Physik, Forschungszentrum Karlsruhe GMBH, Postfach 3640 D-76021, Karlsruhe, Germany
*
b)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

Gravimetry and x-ray diffraction were used to study the kinetics and mechanism of internal oxidation in air at 300–600 °C of Ag–2 and 4 at.% Mg alloys. All the features typical of the non-Wagnerian behavior in more dilute alloys (the slower initial and faster intermediate kinetics, oxygen release from the samples at the late stages, and stabilization of highly hyperstoichiometric oxides with O/Mg up to 1.74 ± 0.02) are also observed in these more concentrated alloys. A linear correlation between the lattice parameter of oxidized alloys, magnesium content, and amount of excess oxygen is found and used for analyzing the published data on the lattice parameters in other oxidized Ag–Mg alloys. Such analysis suggests that, at early stages of low-temperature oxidation, O/Mg ratios could be higher than 4 ± 0.8, which is interpreted as evidence that O–Mg interaction at these stages is the trapping of mobile O atoms by immobile Mg atoms, so that oxidation of Ag–Mg alloys can be considered as formation and subsequent decomposition of Ag–Mg–O solid solutions, and it is the decomposition stage that significantly affects the oxidation kinetics. Possible impact of these findings on optimization of alloy-sheath composition and microstructure in Bi2223/AgMg superconducting tapes is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goldacker, W., Kessler, J., Ullmann, B., Mossang, E., and Rikel, M., IEEE Trans. Appl. Supercond. 5, 1834 (1995).CrossRefGoogle Scholar
2.Yamada, Y., Masegi, T., Satou, M., Yamamoto, K., Nomura, S., Horigami, O., Ogiwara, H., Kimura, S., Fujioka, T., Hasegawa, T., and Kamisada, Y., in Proc. 1994 Int. Cryogenic Material Conf. Hawaii, October 1994, pp. 114121.Google Scholar
3.Goldacker, W., Mossang, E., Quilitz, M., and Rikel, M., IEEE Trans. Appl. Supercond. 7, 1407 (1997).CrossRefGoogle Scholar
4.Bosch, R. A., Lenel, F. V., and Ansell, G. S., Trans. Am. Soc. Metals 57, 960 (1964).Google Scholar
5.Keβler, J., Blüm, S., Wildgruber, U., and Goldacker, W., J. Alloys Compd. 195, 511 (1993).CrossRefGoogle Scholar
6.Spengler, H., Metall. 18, 727 (1964).Google Scholar
7.Hirschhorn, J. S. and Lenel, F. V., Trans. Am. Soc. Metals 59, 208 (1966).Google Scholar
8.Combe, A., Bernardini, J., and Cabane, J., Mém. Scient. Revue Métal. 73, 149 (1976).Google Scholar
9.Charrin, L. L., Combe, A., and Moya, G., Acta Metall. 29, 1593 (1981).CrossRefGoogle Scholar
10.Douglass, D. L., Zhu, B., and Gesmundo, F., Oxid. Met. 38, 365 (1992).CrossRefGoogle Scholar
11.Gegner, J., Hörz, G., and Kirchheim, R., Interface Sci. 5, 231 (1997).CrossRefGoogle Scholar
12.Meijering, J. L., Adv. Mater. Res. 5, 1 (1971).Google Scholar
13.Douglass, D. L., Oxid. Met. 44, 81 (1995).CrossRefGoogle Scholar
14.Charrin, L., Combe, A., Charai, A., and Cabane, J., J. Phys. IV (Paris), 4 (C3), C3127 (1994).Google Scholar
15.Rikel, M. O. and Alekseeva, Z. M., in Raschety i eksperimental'nye metody postroeniya diagramm sostoyaniya (Calculations and Experimental Methods in Evaluation of Phase Diagrams), edited by Ageev, N.V. (Nauka, Moscow, 1985), pp. 160164.Google Scholar
16.Charrin, L., Combe, A., Cabane, F., and Cabane, J., Oxid. Met. 40, 483 (1993).CrossRefGoogle Scholar
17.Semega, B.M., Charrin, L., Combe, A., and Aride, J., Philos. Mag. A 66, 1139 (1992).CrossRefGoogle Scholar
18.Charrin, L., Combe, A., and Cabane, J., Oxid. Met. 37, 65 (1992).CrossRefGoogle Scholar
19.Rapp, R.A., Corrosion 21, 382 (1965).CrossRefGoogle Scholar
20.Combe, A., Charrin, L., Moya, G., and Cabane, J., Acta Metall. 31, 1019 (1983).CrossRefGoogle Scholar
21.Allain, J., Fayoux, C., and Naudon, A., Mém. Scient. Revue Métal. 78, 157 (1981).Google Scholar
22.Darken, L.S., Trans. Am. Soc. Met. 54, 600 (1961).Google Scholar
23.Podgurski, H.H. and Davis, F. N., Trans. Met. Soc. AIME 230, 731 (1964).Google Scholar
24.Lacroix, R., Mém. Scient. Revue Métal. 63, 693 (1966).Google Scholar
25.Segeth, W., Boerma, D. O., Miesen, L., Heringa, J. R., and van Veen, A., Z. Phys. B 73, 43 (1988).CrossRefGoogle Scholar
26.Huffman, G. P. and Podgurski, H. H., Acta Metall. 21, 449 (1973).CrossRefGoogle Scholar
27.Doroso, J. R. and Reed-Hill, R. E., Metall. Trans. A 7, 961 (1976).Google Scholar
28.Charai, A. and Nihoul, G., Philos. Mag. A 58, 571 (1988).CrossRefGoogle Scholar
29.Finis, M. W., J. Phys.: Condens. Matter 8, 5811 (1996).Google Scholar
30.Gorreta, K. C., Routbort, J. L., Thayer, R. L., Carrol, J. P., Wolfenstine, J., Kessler, J., and Schwarz, J., Physica C 265, 201 (1996).CrossRefGoogle Scholar
31.Ullmann, B., Gäbler, A., Quilitz, M., and Goldacker, W., IEEE Trans. Appl. Supercond. 7, 2042 (1997).CrossRefGoogle Scholar
32.Gase und Kohlenstoff in Metallen, edited by Fromm, E. and Gebhardt, E. (Springer, Berlin, 1976).CrossRefGoogle Scholar
33.de Fontaine, D., in Metallurgical Treatises, edited by Tien, J.K. and Elliot, J. F. (Met. Soc. AIME, New York, 1981), p. 423.Google Scholar
34.Khachaturyan, A. G., Teooriya fazovykh prevrachchenii i struktura tverdykh rastvorov (Theory of Phase Transformations and Structure of Solid Solutions) (Nauka, Moscow, 1974).Google Scholar
35.Hirschhorn, J. S., J. Metal. Sci. 1, 91 (1967).CrossRefGoogle Scholar
36.Combe, A. and Cabane, J., Oxid. Met. 21, 21 (1984).CrossRefGoogle Scholar