Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T23:39:46.576Z Has data issue: false hasContentIssue false

Ion exchange and radiation response of H-related point defects in natural quartz crystals

Published online by Cambridge University Press:  03 March 2011

Harish Bahadur
Affiliation:
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078–0444
Get access

Abstract

Infrared absorption measurements have been used to study the radiation response of various hydroxyl point defects present in natural quartz crystals in their unswept, Na-swept, and H-swept conditions for “low-H” and “high-H” samples with similar aluminum concentration. The irradiation was done at 77 K, 300 K, and finally again at 77 K in sequence. At low-temperature irradiation the Al-OH bands equalize in their intensity-like H-swept or prior 300 K-irradiated cultured quartz. Among other major bands the alkali-related centers show a reduction in their strength at all stages of irradiation. Purely H-related centers show no steady-state room temperature effects; only the low-temperature irradiation reduces their band strength. The results have been discussed in terms of proton and alkali ion motion to shallow and deep traps and compared with cultured quartz.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1King, J. C. and Koehler, D. R., in Precision Frequency Control, edited by Gerber, E. A. and Ballato, A. (Academic Press, Orlando, FL, 1985), Vol. 1, pp. 147159.Google Scholar
2Halliburton, L. E., Martin, J. J., and Koehler, D. R., in Precision Frequency Control, edited by Gerber, E. A. and Ballato, A. (Academic Press, Orlando, FL, 1985), Vol. 1, pp. 146.Google Scholar
3Martin, J. J., J. Appl. Phys. 68, 5095 (1990).CrossRefGoogle Scholar
4Weil, J. A., Phys. Chem. Minerals 10, 149 (1984).CrossRefGoogle Scholar
5Kats, A., Philips Res. Rept. 17, 133 (1962).Google Scholar
6Dodd, D. M. and Fraser, D. B., J. Phys. Chem. Solids 26, 673 (1965).CrossRefGoogle Scholar
7Brown, R. N. and Kahan, A., J. Phys. Chem. Solids 36, 467 (1975).CrossRefGoogle Scholar
8Krefft, G. B., Radiat. Eff. 26, 249 (1975).CrossRefGoogle Scholar
9Bahadur, H., J. Appl. Phys. 66, 4973 (1989).CrossRefGoogle Scholar
10Sibley, W. A., Martin, J. J., Wintersgill, M. C., and Brown, J. D., J. Appl. Phys. 50, 5449 (1979).CrossRefGoogle Scholar
11Halliburton, L. E., Koumvakalis, N., Markes, M. E., and Martin, J. J., J. Appl. Phys. 52, 3565 (1981).CrossRefGoogle Scholar
12Martin, J. J., IEEE Trans. Ultrason. Ferroelec. Freq. Control 35, 288 (1988).CrossRefGoogle Scholar
13Gualtieri, J. G., Proc. IEEE Ultrasonics Symp., 381391 (1989).CrossRefGoogle Scholar
14Martin, J. J., J. Appl. Phys. 56, 2536 (1984).CrossRefGoogle Scholar
15Halliburton, L. E., Markes, M., Martin, J. J., Doherty, S. P., Koumvakalis, N., Sibley, W. A., Armington, A. F., and Brown, R. N., IEEE Trans. Nucl. Sci. NS–26, 4851 (1979).CrossRefGoogle Scholar
16Euler, F., Lipson, H. G., Kahan, A., and Armington, A. F., Proc. 36th Ann. Symp. Frequency Control, 115 (1982). Document no. ADA 130811, NTIS, Springfield, VA 22161.CrossRefGoogle Scholar
17Lipson, H. G. and Kahan, A., IEEE Trans. Nucl. Sci. NS–31, 1223 (Dec. 1984).CrossRefGoogle Scholar
18Lipson, H. G., and Kahan, A., J. Appl. Phys. 58, 963 (1985).CrossRefGoogle Scholar
19Fraser, D. B., J. Appl. Phys. 35, 2913 (1964).CrossRefGoogle Scholar
20Lopez, A. R., West, J. D., and Martin, J. J., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Chen, Y., Kingery, W. D., and Stokes, R. J. (Mater. Res. Soc. Symp. Proc. 60, Pittsburgh, PA, 1986), p. 451.Google Scholar
21Hansom, W. P., Proc. 38th Ann. Frequency Control Symp., U.S. Army Electronics Research and Development Command, Fort Monmouth, NJ, 50 (1984). Copies available from IEEE 445 Hoes Lane, Piscataway, NJ 08854, as document no. 84CH2062-8.CrossRefGoogle Scholar
22Gualtieri, J. G. and Eckart, D. W., Proc. 40th Ann. Symp. Frequency Control, U.S. Army Electronics Research and Development Command, Fort Monmouth, NJ115 (1986). Copies available from IEEE-445 Hoes Lane, Piscataway, NJ 08854, as document no. 86CH2330-9.CrossRefGoogle Scholar
23Doherty, S. P., Martin, J. J., Armington, A. F., and Brown, R. N., J. Appl. Phys. 5, 4164 (1980).CrossRefGoogle Scholar
24Bahadur, H., J. Appl. Phys. 73, 7790 (1993).CrossRefGoogle Scholar
25Bahadur, H., Proc. 5th European Frequency and Time Forum, France, March 1991, pp. 148156. Copies available from Swiss Foundation for Research in Microtechnology, Rue de l'orangerie 8, CH-2000, Neuchâtel, Switzerland.Google Scholar
26Bahadur, H., Proc. 1991 IEEE International Annual Frequency Control Symposium, 45, pp. 3757 (1991). Copies available from IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854.CrossRefGoogle Scholar
27Bahadur, H., Proc. First European Conf. Radiation and Its Effects on Devices and Systems, RADECS91 in cooperation with European Space Agency, IEEE and Univ. Montpellier II, 289293 (1991). Document no. 91TH0400-2. Copies available from IEEE, 445 Hoes Lane, Piscataway, NJ 08854.Google Scholar
28Bahadur, H., IEEE Trans. Nuclear Sci. 39, 2170 (1992).CrossRefGoogle Scholar
29Markes, M. E. and Halliburton, L. E., J. Appl. Phys. 50, 8172 (1979).CrossRefGoogle Scholar
30Halliburton, L. E., Markes, M. E., and Martin, J. J., Proc. 34th Ann. Symp. Frequency Control, 1 (1980). Copies available from Electronic Industries Association, 2001 Eye Street, Washington, DC 20006.Google Scholar
31Capone, B. R., Kahan, A., Brown, R. N., and Buckmelter, J. R., IEEE Trans. Nucl. Sci. NS–17, 217 (1970).CrossRefGoogle Scholar
32Poll, R. A. and Ridgway, S. L., IEEE Trans. Nucl. Sci. NS–13, 130 (1966).CrossRefGoogle Scholar
33Young, T. J., Koehler, D. R., and Adams, R. A., Proc. 32nd Ann. Symp. Frequency Control, 34 (1978). Copies available from electronic Industries Association, 2001 Eye Street, N.W., Washington, DC 20006.CrossRefGoogle Scholar
34Kahan, A., Euler, F., Lipson, H. G., Chen, C., and Halliburton, L. E., Proc. 41st Ann. Symp. Frequency Control, 216 (1987). Document no. 87CH 2427-3 NTIS, Springfield, VA 22161.CrossRefGoogle Scholar
35Pellegrini, P., Euler, F., Kahan, A., Flanagan, T. M., and Wrobel, T. F., IEEE Trans. Nucl. Sci. NS–25, 1267 (1978).CrossRefGoogle Scholar
36King, J. C. and Sander, H. H., Radiat. Eff. 26, 203 (1975).CrossRefGoogle Scholar
37King, J. C. and Sander, H. H., IEEE Trans. Nucl. Sci. NS–19, 23 (1972).CrossRefGoogle Scholar
38King, J. C. and Sander, H. H., IEEE Trans. Nucl. Sci. NS–20, 117 (1973).CrossRefGoogle Scholar
39Bahadur, H. and Parshad, R., Rev. Sci. Instrum. 51, 1420 (1980).CrossRefGoogle Scholar
40Koehler, D. R. and Martin, J. J., J. Appl. Phys. 57, 5205 (1985).CrossRefGoogle Scholar