Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:07:58.042Z Has data issue: false hasContentIssue false

Influence of the anion nature on the properties of Sr-containing formamidinium tin halide perovskites

Published online by Cambridge University Press:  09 November 2018

Lucangelo Dimesso*
Affiliation:
Materials and Earth Sciences Department, Technische Universität Darmstadt, Darmstadt D-64287, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Formamidinium–tin–strontium halides (CH(NH2)2Sn1−ySryX3 (FASnX3), X = I, Br and 0.0 ≤ y ≤ 0.1) were investigated. X-ray diffraction analysis revealed orthorhombic FASnI3 (space group Amm2) and SnI2 for X = I as well as cubic FASnBr3 (space group $Pm\bar{3}m$) and SnBr2 for X = Br, respectively. For X = I, the optical spectra displayed a decrease of the absorption edges with increasing Sr content (1055 nm, y = 0.0; 950–960 nm, y > 0.0) and a direct semiconducting behavior with narrow band energy gaps (1.31–1.34 eV). For X = Br, on increasing the absorption edges (492 nm, y = 0.0; 975 nm, y = 0.075), a direct semiconducting behavior with band energy gaps between 2.65 eV (y = 0.0) and 1.38 eV (y = 0.075) were observed and the emission photoluminescence (PL) spectra (excitation wavelength λexc = 380 nm) showed an increase of the luminescence response after the thermal treatment.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schmidt, T.M., Larsen-Olsen, T.T., Carle, J.E., Angmo, D., and Krebs, F.C.: Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, 1500569 (2015).CrossRefGoogle Scholar
Dimesso, L., Dimamay, M., Hamburger, M., and Jaegermann, W.: Properties of CH3NH3PbX3 (X = I, Br, Cl) powders as precursors for organic/inorganic solar cells. Chem. Mater. 26, 6762 (2014).CrossRefGoogle Scholar
Ferrara, C., Patrini, M., Pisanu, A., Quadrelli, P., Milanese, C., Tealdia, C., and Malavasi, L.: Wide band-gap tuning in Sn-based hybrid perovskites through cation replacement: The FA1−xMAxSnBr3 mixed system. J. Mater. Chem. A 5, 9391 (2017).CrossRefGoogle Scholar
Jeon, J., Noh, J.H., Yang, W.S., Kim, Y., Ryu, S., Seo, J., and Seok, S.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015).CrossRefGoogle ScholarPubMed
Pellet, N., Gao, P., Gregori, G., Yang, T-Y., Nazeeruddin, M., Maier, J., and Graetzel, M.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem., Int. Ed. 53, 3151 (2014).CrossRefGoogle ScholarPubMed
Jacobsson, T.J., Correa-Baena, J-P., Pazoki, M., Saliba, M., Schenk, K., Graetzel, M., and Hagfeldt, A.: Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9, 1706 (2016).CrossRefGoogle Scholar
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234 (2015).CrossRefGoogle ScholarPubMed
Mancini, A., Quadrelli, P., Amoroso, G., Milanese, C., Boiocchi, M., Sironi, A., Patrini, M., Guizzetti, G., and Malavasi, L.: Synthesis, structural and optical characterization of APbX3 (A = methylammonium, dimethylammonium, trimethylammonium; X = I, Br, Cl) hybrid organic–inorganic materials. J. Solid State Chem. 240, 5560 (2016).CrossRefGoogle Scholar
Patrini, M., Quadrelli, P., Milanese, C., and Malavasi, L.: FA0.8MA0.2SnxPb1−xI3 hybrid perovskite solid solution: Toward environmentally friendly, stable, and near-IR absorbing materials. Inorg. Chem. 55, 12752 (2016).CrossRefGoogle ScholarPubMed
Babayigit, A., Duy Thanh, D., Ethirajan, A., Manca, J., Muller, M., Boyen, H.G., and Conings, B.: Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6, 18721 (2016).CrossRefGoogle ScholarPubMed
European Union: Air Quality Standards (2017). Available at: http://ec.europa.eu/environment/air/quality/standards.htm (accessed 06, 2017).Google Scholar
Scientific Committee on Health and Environment Risks (SCHER), Lead standard in drinking waters, Report, © European Union, Brussels, 2011. doi: 10.2772/33674.Google Scholar
Patnaik, P.: Handbook of Inorganic Chemicals (McGraw-Hill, New York, 2003); p. 461.Google Scholar
Wang, K., Liang, Z., Wang, X., and Cui, X.: Lead replacement in CH3NH3PbI3 perovskites. Adv. Electron. Mater. 1, 1500089 (2015).CrossRefGoogle Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
Harrison, P.G.: Chemistry of Tin, Blackie, ed. (Glasgow, Scotland, 1989); ch. 2, p. 9.Google Scholar
Stoumpos, C.C., Malliakas, C.D., and Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019 (2013).CrossRefGoogle ScholarPubMed
Yang, J., Siempelkamp, B.D., Liu, D., and Kelly, T.L.: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955 (2015).CrossRefGoogle ScholarPubMed
Aristidou, N., Sanchez-Molina, I., Chotchuangchutchaval, T., Brown, M., Martinez, L., Rath, T., and Haque, S.A.: The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem., Int. Ed. 54, 8208 (2015).CrossRefGoogle ScholarPubMed
Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., Ethirajan, A., Verbeeck, J., Manca, J., Mosconi, E., De Angelis, F., and Boyen, H.G.: Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).CrossRefGoogle Scholar
Dimesso, L., Das, C., Mayer, T., and Jaegermann, W.: Investigation of earth-alkaline (EA = Mg, Ca, Sr) containing methylammonium tin iodide perovskite systems. J. Mater. Sci. 53, 356 (2018).CrossRefGoogle Scholar
Shai, X., Zuo, L., Sun, P., Liao, P., Huang, W., Yao, E.P., Li, H., Liu, S., Shen, Y., Yang, Y., and Wang, M.: Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy 36, 213 (2017).CrossRefGoogle Scholar
Lau, C.F.J., Zhang, M., Deng, X., Zheng, J., Bing, J., Ma, Q., Kim, J., Hu, L., Green, M.A., Huang, S., and Ho-Baillie, A.: Strontium-Doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett. 2, 2319 (2017).CrossRefGoogle Scholar
Scaife, D., Weller, P., and Fisher, W.: Crystal preparation and properties of cesium tin(II) trihalides. J. Solid State Chem. 9, 308 (1974).CrossRefGoogle Scholar
Foster, L.S., Nahas, H.G., and Lineken, E.E.: Inorganic Syntheses, Vol. 2, Fernelius, W.C., ed. (John Wiley & Sons, Inc., Hoboken, New Jersey, 1946); p. 210.Google Scholar
Eckold, P., Hügel, W., Dinnebier, R.E., and Niewa, R.: Two modifications of tin(II) bromide. Z. Anorg. Allg. Chem. 641, 1467 (2015).CrossRefGoogle Scholar
Perumal, A., Shendre, S., Li, M., Tay, Y.K.E., Sharma, V.K., Chen, S., Wei, Z., Liu, Q., Gao, Y., Buenconsejo, P.J.S., Tiam Tan, S., Gan, C.L., Xiong, Q., Sum, T.C., and Demir, H.V.: High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Sci. Rep. 6, 36733 (2016).CrossRefGoogle ScholarPubMed
Haynes, W.M., Lide, D.R., and Bruno, T.J.: Physical constants of inorganic compounds. In CRC Handbook of Chemistry and Physics, 95th ed., Haynes, W.M., ed. (CRC Press/Taylor and Francis, Boca Raton, 2015); ch. 4, pp. 1145.Google Scholar
Mitzi, D.B.: Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8, 791 (1996).CrossRefGoogle Scholar
Andres, J., Krechl, J., Carda, M., and Silla, E.: An ab initio study of the unimolecular decomposition mechanism of formamidine. 4-31G characterization of potential energy hypersurface. Int. J. Quantum Chem. XL, 127 (1991).CrossRefGoogle Scholar
Almatarneh, M.H., Flinn, C.G., and Poirier, R.A.: Ab initio study of the decomposition of formamidine. Can. J. Chem. 83, 2082 (2005).CrossRefGoogle Scholar
Koh, T.M., Krishnamoorthy, T., Yantara, N., Shi, C., Leong, W.L., Boix, P.P., Grimsdale, A.C., Mhaisalkar, S.G., and Mathews, N.: Formamidinium tin-based perovskite with low E g for photovoltaic applications. J. Mater. Chem. A 3, 14996 (2015).CrossRefGoogle Scholar
Milot, R.L., Eperon, G.E., Green, T., Snaith, H.J., Johnston, M.B., and Herz, L.M.: Radiative monomolecular recombination boosts amplified spontaneous emission in HC(NH2)2SnI3 perovskite films. J. Phys. Chem. Lett. 7, 4178 (2016).CrossRefGoogle Scholar
, X., Wang, Y., Stoumpos, C.C., Hu, Q., Guo, X., Chen, H., Yang, L., Smith, J.S., Yang, W., Zhao, Y., Xu, H., Kanatzidis, M.G., and Jia, Q.: Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater. 28, 8663 (2016).CrossRefGoogle Scholar
MSDS: Formamidinium bromide (CAS No. 146958-06-7), (Ossila Ltd, Kroto Innovation Centre, Sheffield, U.K.).Google Scholar
Wardell, J.L.: Tin inorganic chemistry. In Encyclopedia of Inorganic Chemistry, Bruce King, R., ed. (Wiley, Chichester, 1994); ch. 9, pp. 55905605.Google Scholar
Hilpert, K., Miller, M., and Ramondo, F.: Thermochemistry of tetrabromoditin and bromoiodotin gaseous. J. Phys. Chem. 95, 7261 (1991).CrossRefGoogle Scholar
Dimesso, L., Kim, Y.M., and Jaegermann, W.: Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater. Sci. Eng., B 204, 27 (2016).CrossRefGoogle Scholar
Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M.K., Graetzel, M., and De Angelis, F.: Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608 (2014).CrossRefGoogle ScholarPubMed
Dimesso, L., Fasel, C., Lakus-Wollny, K., Mayer, T., and Jaegermann, W.: Thermal stability of lead-free CH3NH3SnxI3 systems (0.9 ≤ x ≤ 1.1) for photovoltaics. Mater. Sci. Semicond. Process. 68, 152 (2017).CrossRefGoogle Scholar
Bokdam, M., Sander, T., Stroppa, A., Picozzi, S., Sarma, D.D., Franchini, C., and Kresse, G.: Role of polar phonons in the photo excited state of metal halide perovskites. Sci. Rep. 6, 28618 (2016).CrossRefGoogle ScholarPubMed
Ma, Z-Q., Pan, H., and Wong, P.K.: A first-principles study on the structural and electronic properties of Sn-based organic–inorganic halide perovskites. J. Electron. Mater. 45, 5956 (2016).CrossRefGoogle Scholar
Fang, H.H., Protesescu, L., Balazs, D.M., Adjokatse, S., Kovalenko, M.V., and Loi, M.A.: Exciton recombination in formamidinium lead triiodide: Nanocrystals versus thin films. Small 13, 1700673 (2017).CrossRefGoogle ScholarPubMed
Gasparotto, G., Lima, S.A.M., Davolos, M.R., Varela, J.A., Longo, E., and Zaghete, M.A.: Luminescence properties of Eu3+- and Mg2+-doped LiTaO3 obtained via the polymeric precursor method. J. Lumin. 128, 1606 (2008).CrossRefGoogle Scholar
Liu, Z., Wang, Q., Yang, Y., Tao, C., and Yang, H.: Luminescent properties of codoping Y2O3: Eu, Me (Me = Mg, Ca) nanorods. J. Nanopart. Res. 12, 2233 (2010).CrossRefGoogle Scholar
Cao, R., Luo, W., Xu, H., Luo, Z., Hua, Q., Fu, T., and Peng, D.: Luminescence property and emission enhancement of YbAlO3:Mn4+ red phosphor by Mg2+ or Li+ ions. Opt. Mater. 53, 169 (2016).CrossRefGoogle Scholar
Dimesso, L., Das, C., Stöhr, M., and Jaegermann, W.: Investigation of cesium tin/lead iodide (CsSn1−xPbxI3) systems. Mater. Res. Bull. 85, 80 (2017).CrossRefGoogle Scholar
Wang, P., Guan, J., Galeschuk, D.T.K., Yao, Y., He, C.F., Jiang, S., Zhang, S., Liu, Y., Jin, M., Jin, C., and Song, Y.: Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite. J. Phys. Chem. Lett. 8, 2119 (2017).CrossRefGoogle ScholarPubMed
Supplementary material: File

Dimesso supplementary material

Dimesso supplementary material 1

Download Dimesso supplementary material(File)
File 9.9 MB