Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T10:57:08.811Z Has data issue: false hasContentIssue false

In situ transmission electron microscopy study of the silicidation process in Co thin films on patterned (001) Si substrates

Published online by Cambridge University Press:  26 November 2012

C. Ghica
Affiliation:
National Institute of Materials Physics, P.O. Box MG-7, Magurele, 76900 Bucharest, Romania
L. Nistor
Affiliation:
National Institute of Materials Physics, P.O. Box MG-7, Magurele, 76900 Bucharest, Romania
H. Bender
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
A. Steegen
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
A. Lauwers
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
J. Van Landuyt*
Affiliation:
Universiteit Antwerpen, EMAT, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The results of an in situ transmission electron microscopy study of the formation of Co-silicides on patterned (001) Si substrates are discussed. It is shown that the results of the in situ heating experiments agreed very well with the data based on standard rapid thermal annealing experiments. Fast heating rates resulted in better definition of the silicide lines. Also, better lines were obtained for samples that received already a low-temperature ex situ anneal. A Ti cap layer gave rise to a higher degree of epitaxy in the CoSi2 silicide.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gignac, L.M., Svilan, V., Clevenger, L.A., Cabral, C. Jr, and Lavoie, C., in Thin Films—Structure and Morphology, edited by Moss, S.C., Ila, D., Cammarata, R.C., Chason, E.H., Einstein, T.L., and Williams, E.D. (Mater. Res. Soc. Symp. Proc. 441, Pittsburgh, PA, 1997), pp. 255266.Google Scholar
2.Wang, Q.F., Maex, K., Kubicek, S., Jonckheere, R., Kerkwijk, B., Verbeeck, R., Biesemans, S., and De Meyer, K., 1995 Symposium of VLSI Technology Digest of Technical Papers, Kyoto, 1995, p. 17.CrossRefGoogle Scholar
3.Hsu, H.F., Chen, L.J., and Chu, J.J., J. Appl. Phys. 69, 4282 (1991).CrossRefGoogle Scholar
4.Yew, J.Y., Chen, L.J., and Wu, W.F., J. Vac. Sci. Technol. B 17, 939 (1999).CrossRefGoogle Scholar
5.Wolf, H.F., Silicon Semiconductor Data (Pergamon, Oxford, 1976).Google Scholar
6.Haderbanche, L., Wetzel, P., Pirri, C., Petruchetti, J.C., Bolmot, D., and Gewinner, G., Appl. Surface Sci. 38, 80 (1989).CrossRefGoogle Scholar
7.Catana, A., Schmid, P.E., Lu, P., and Smith, D.J., Phil. Mag. 66, 933 (1992).CrossRefGoogle Scholar
8.Badenes, G., Rooyackers, R., De Wolf, I., and Deferm, L., Proc. Int. Conf. On “Solid State Devices and Materials,’ Aug. 26–29, 1999, Yokohama, Japan, 1999, p. 46.Google Scholar
9.Lau, S.S., Mayer, J.W., and Tu, K.N., J. Appl. Phys. 49, 4005 (1978).CrossRefGoogle Scholar
10.van Gurp, G.J. and Lagnereis, C., J. Appl. Phys. 46, 4301 (1975).CrossRefGoogle Scholar
11.Bulle-Lieuwma, C.W.T., van Ommen, A.H., Hornstra, J., and Aussems, C.N.A.M., J. Appl. Phys. 71, 2211 (1992).CrossRefGoogle Scholar
12.Sukegawa, T., Tomita, H., Fushida, A., Goto, K., Komiya, S., and Nakamura, T., Jpn. J. Appl. Phys. 36, 6244 (1997).CrossRefGoogle Scholar
13.Detavernier, C., Van Meirhaeghe, R.L., Cardon, F., Donaton, R.A., and Maex, K., Microelectron Eng. 50, 125 (2000).CrossRefGoogle Scholar
14.Detavernier, C., Van Meirhaeghe, R.L., Cardon, F., Maex, K., Bender, H., and Zhu, S., J. Appl. Phys. 88, 133 (2000).CrossRefGoogle Scholar
15.Alberti, A., La Via, F., Spinella, C., and Rimini, E., Appl. Phys. Lett. 75, 2924 (1999).CrossRefGoogle Scholar