Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T22:53:46.086Z Has data issue: false hasContentIssue false

Highly (111)-oriented and conformal iridium films by liquid source metalorganic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Jaydeb Goswami
Affiliation:
Department of Chemical and Materials Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287–6006
Chang-Gong Wang
Affiliation:
Department of Chemical and Materials Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287–6006
Prashant Majhi
Affiliation:
Department of Chemical and Materials Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287–6006
Yong-Wook Shin
Affiliation:
Department of Chemical and Materials Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287–6006
Sandwip K. Dey
Affiliation:
Department of Chemical and Materials Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, Arizona 85287–6006
Get access

Abstract

Highly (111)-oriented and conformal iridium (Ir) films were deposited by a liquid source metalorganic-chemical-vapor-deposition process on various substrates. An oxygen-assisted pyrolysis of (methylcyclopentadienyl) (1,5-cyclooctadiene) Ir precursor at a wide range of substrate temperatures (Tsub) between 300 and 700 °C was used. At a low Tsub of 350 °C, the randomly oriented polycrystalline films exhibited an I111/I200 x-ray intensity ratio of 6. However, the films deposited at Tsub = 700 °C on native SiO2 and amorphous SiO2 surfaces were highly oriented with the I111/I200 ratios of 277 and 186, respectively. The transmission electron microscopy study revealed continuous, dense, and faceted microstructures of Ir films. Also, the step coverage of Ir on TiN (64%) was higher than that on amorphous SiO2 (50%) surfaces.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Auciello, O., Scott, J.F., and Ramesh, R, Phys. Today 51, 22 (1998).CrossRefGoogle Scholar
2Hwang, C.S., Mater. Sci. Eng. B56, 178 (1998).CrossRefGoogle Scholar
3Grill, A., Mater. Res. Soc. Symp. Proc. 541, 89 (1999).CrossRefGoogle Scholar
4Jeon, Y-C., Seon, J-M., Joo, J-H., Oh, K-Y., Roh, J-S., Kim, J-J., and Kim, D-S., Appl. Phys. Lett. 71, 467 (1997).CrossRefGoogle Scholar
5Izumi, N., Fujimori, Y., Nakamura, T., and Kamisawa, A., IEICE Trans. Electron. E81–C, 513 (1998).Google Scholar
6Grill, A. and Brady, M.J., Integrated Ferroelectrics 9, 299 (1995).CrossRefGoogle Scholar
7Lee, W-J., Basceri, C., Streiffer, S.K., Kingon, A.I., Yang, D-Y., Park, Y., and Kim, H-G., Thin Solid Films 323, 285 (1998).CrossRefGoogle Scholar
8Xu, C. and Baum, T.H., Chem. Mater. 10, 2329 (1998).CrossRefGoogle Scholar
9Goto, T., Vargas, R., and Hirai, T., J. Phys. IV Colloq. C3 3, 297 (1993).Google Scholar
10Gelfond, N.V., Igumenov, I.K., Boronin, A.I., Bukhtiyarov, V.I., Smirnov, M.Y., Prosvirin, I.P., and Kwon, R.I., Surf. Sci. 275, 323 (1992).CrossRefGoogle Scholar
11Hoke, J.B., Stern, E.W., and Murray, H.H., J. Mater. Chem. 1, 551(1991).CrossRefGoogle Scholar
12Vargas, R., Goto, T., Zhang, W., and Hirai, T., Appl. Phys. Lett. 65, 1094 (1994).CrossRefGoogle Scholar
13Xu, C., Dimeo, F. Jr., Baum, T.H., and Russel, M., Mater. Res. Soc. Symp. Proc. 541, 129 (1999).CrossRefGoogle Scholar
14Sun, Y-M., Endle, J., Smith, K., Ekerdt, J.G., Hance, R.L., Alluri, P., and White, J.M., Mater. Res. Soc. Symp. Proc. 541, 101 (1999).CrossRefGoogle Scholar
15Sun, Y-M., Endle, J.P., Smith, K., Whaley, S., Mahaffy, R., Ekerdt, J.G., White, J.M., and Hance, R.L., Thin Solid Films 346, 100 (1999).CrossRefGoogle Scholar
16Dey, S.K., Goswami, J., Wang, C-G., and Majhi, P., Jpn. J. Appl. Phys. 38, L1052 (1999).CrossRefGoogle Scholar
17VanBuskirk, P.C., Bilodeau, S.M., Roeder, J.F., and Kirlin, P.S., Jpn. J. Appl. Phys. 35, 2520 (1996).CrossRefGoogle Scholar
18Dey, S.K. and Alluri, P.V., Mater. Res.Soc. Bull. 21, 44 (1996).CrossRefGoogle Scholar
19 JCPDS Card No. 06-0598.Google Scholar
20Doolittle, L.R., Nucl. Instr. Meth. B9, 344 (1985).CrossRefGoogle Scholar
21Burke, A., Braeckelmann, G., Manger, D., Eisenbraun, E., Kaloyeros, A.E., McVittie, J.P., Han, J., Bang, D., Loan, J.F., and Sullivan, J.J., J. Appl. Phys. 82, 4651 (1997).CrossRefGoogle Scholar
22Hwang, G.S., Moon, S.H., Nam, S.W., and Shin, C.B., J. Mater. Res. 14, 2377 (1999).CrossRefGoogle Scholar
23Goswami, J., Shivashankar, S.A., and Ananthakrishna, G., Thin Solid Films 305, 52 (1997).CrossRefGoogle Scholar