Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T02:33:37.280Z Has data issue: false hasContentIssue false

High critical current density YBa2Cu3O thick films using ion beam assisted deposition MgO bi-axially oriented template layers on nickel-based superalloy substrates

Published online by Cambridge University Press:  31 January 2011

J. R. Groves
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
P. N. Arendt
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
S. R. Foltyn
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
Q. X. Jia
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
T. G. Holesinger
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
H. Kung
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
E. J. Peterson
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
R. F. DePaula
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
P. C. Dowden
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
L. Stan
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
L. A. Emmert
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
Get access

Abstract

Nickel-based superalloys have been coated with magnesium oxide (MgO) using ion-beam-assisted deposition (IBAD). This technique produced a well-oriented bi-axially textured MgO template layer with a Ф scan full width half maximum of 6.4°. The layer architecture for these samples was as follows: polished hastelloy C276/amorphous Si3N4/IBAD MgO/ pulsed laser deposited (PLD) Y2O3–ZrO2/PLD CeO2/PLD YBa2Cu3O7?δ. The subsequent heteroepitaxial PLD of 1.5-mm-thick YBCO showed a nominal critical current density of over 1 MA/cm2 (75 K, self-field) along a microbridge and had an in-plane mosaic spread of 4.8° and an out-of-plane spread of 1.3°. These results compare well with our earlier work using IBAD yttria-stabilized zirconia (YSZ) as a template layer and indicate that IBAD MgO is a suitable substitute. Furthermore, these results suggest that IBAD MgO could be adapted to and increase the feasibility of a continuous process to fabricate longer lengths of coated conductors at speeds 100 times faster than that previously realized with IBAD YSZ.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Finnemore, D.K., Gray, K.E., Maley, M.P., Welch, D.O., Christen, D.K., and Kroeger, D.M., Physica C 320, 1 (1999).Google Scholar
2Roas, B., Schultz, L., and Saemannischenko, G., Phys. Rev. Lett. 64, 479 (1990).Google Scholar
3Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C.C., Chi, J., Oprysko, M.M., and Scheuermann, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
4Dimos, D., Chaudhari, P., Mannhart, J., and Legoues, F.K., Phys. Rev. Lett. 61, 219 (1988).Google Scholar
5Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
6Park, C., Norton, D.P., Christen, D.K., Verebelyi, D.T., Feenstra, R., Budai, J.D, Goyal, A., Lee, D.F., Specht, E.D., Kroeger, D.M., and Paranthaman, M., IEEE Trans. Appl. Supercond. 9, 2276 (1999).CrossRefGoogle Scholar
7Arendt, P.N., Foltyn, S.R., Groves, J.R., DePaula, R.F., Dowden, P.C., Roper, J.M., and Coulter, J.Y., Appl. Supercond. 4, 429 (1996).CrossRefGoogle Scholar
8Iijima, Y., Kimura, M., Saitoh, T., and Takeda, K., Physica C 335, 15 (2000).CrossRefGoogle Scholar
9Foltyn, S.R., Arendt, P.N., Dowden, P.C., DePaula, R.F., Groves, J.R., Coulter, J.Y., Jia, Q.X., Maley, M.P., and Peterson, D.E., IEEE Trans. Appl. Supercond. 9, 1519 (1999).CrossRefGoogle Scholar
10Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., and Hammond, R.H., Appl. Phys. Lett. 71, 2955 (1997).CrossRefGoogle Scholar
11Groves, J.R., Arendt, P.N., Jia, Q.X., Foltyn, S.R., DePaula, R.F., Dowden, P.C., Kinder, L.R., Fan, Y., and Peterson, E.J., Ceram. Trans. (unpublished).Google Scholar
12Groves, J.R., Arendt, P.N., Foltyn, S.R., DePaula, R.F., Wang, C.P., and Hammond, R.H., IEEE Trans. Appl. Supercond. 9, 1964 (1999).Google Scholar
13Wu, X.D., Foltyn, S.R., Arendt, P., Townsend, J., Adams, C., Campbell, I.H., Tiwari, P., Coulter, Y., and Peterson, D.E., Appl. Phys. Lett. 65, 1961 (1994).CrossRefGoogle Scholar