Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T12:15:57.847Z Has data issue: false hasContentIssue false

Hierarchically structured carbon nanomaterials for electrochemical energy storage applications

Published online by Cambridge University Press:  02 January 2018

Yanyan Wang
Affiliation:
Generation Power and Energy Storage Batteries, and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
Zhijie Wang
Affiliation:
Generation Power and Energy Storage Batteries, and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
Xiaoliang Yu
Affiliation:
Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan
Baohua Li
Affiliation:
Generation Power and Energy Storage Batteries, and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
Feiyu Kang
Affiliation:
Generation Power and Energy Storage Batteries, and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
Yan-Bing He*
Affiliation:
Generation Power and Energy Storage Batteries, and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Structural hierarchy is ubiquitous in nature and quite important for optimizing the properties of functional materials. Carbon nanomaterials, owing to their unique and tunable physical and chemical properties, have been regarded as promising candidates for various energy storage systems. Constructing hierarchically structured carbon nanomaterials (HSCNs) can boost electrochemical performance of nanocarbons. Therefore, HSCNs have attracted tremendous research attentions in recent years. In this review, we summarized the recent progress in hierarchical structure design of carbon nanomaterials and their potential applications in different energy storage technologies. First we give a brief introduction about carbon nanomaterials and the hierarchical structure merits. Subsequently, recent research works on hierarchical structure design of carbon nanomaterials was summarized and classified according to applications in lithium-ion batteries, sodium-ion batteries, supercapacitors and lithium–sulfur batteries, respectively. In addition, the challenges of HSCNs in different applications were also concluded and reviewed. At last, design principles of HSCNs were summarized and future development trends were prospected.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally to this work.

Contributing Editor: Tianyu Liu

References

REFERENCES

Dai, L., Chang, D.W., Baek, J.B., and Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small 8(8), 1130 (2012).CrossRefGoogle ScholarPubMed
Su, D. and Schlögl, R.: Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3(2), 136 (2010).Google Scholar
Candelaria, S.L., Shao, Y., Zhou, W., Li, X., Xiao, J., Zhang, J., Wang, Y., Liu, J., Li, J., and Cao, G.: Nanostructured carbon for energy storage and conversion. Nano Energy 1(2), 195 (2012).CrossRefGoogle Scholar
Zheng, X., Luo, J., Lv, W., Wang, D-W., and Yang, Q-H.: Two-dimensional porous carbon: Synthesis and ion transport properties. Adv. Mater. 27(36), 5388 (2015).Google Scholar
Kroto, H.W., Heath, J.R., O’Brien, S.C., F Curl, R., and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(162), 163 (1985).Google Scholar
Iijima, S. and Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603 (1993).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004).CrossRefGoogle ScholarPubMed
Yu, X., Wang, J., Huang, Z-H., Shen, W., and Kang, F.: Ordered mesoporous carbon nanospheres as electrode materials for high-performance supercapacitors. Electrochem. Commun. 36, 66 (2013).Google Scholar
Zhang, L., Aboagye, A., Kelkar, A., Lai, C., and Fong, H.: A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49(2), 463 (2014).Google Scholar
Yu, X., Zhao, J., Lv, R., Liang, Q., Zhan, C., Bai, Y., Huang, Z-H., Shen, W., and Kang, F.: Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium–sulfur batteries. J. Mater. Chem. A 3(36), 18400 (2015).Google Scholar
Dutta, S., Bhaumik, A., and Wu, K.C-W.: Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7(11), 3574 (2014).CrossRefGoogle Scholar
Xu, Q., Yu, X., Liang, Q., Bai, Y., Huang, Z-H., and Kang, F.: Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. J. Electroanal. Chem. 739, 84 (2015).Google Scholar
Paraknowitsch, J.P. and Thomas, A.: Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6(10), 2839 (2013).Google Scholar
Zhao, Y., Hu, C., Hu, Y., Cheng, H., Shi, G., and Qu, L.: A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem., Int. Ed. 124(45), 11533 (2012).Google Scholar
Wang, J., Xin, H.L., and Wang, D.: Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part. Part. Syst. Charact. 31(5), 515 (2014).Google Scholar
Rao, C.N.R., Biswas, K., Subrahmanyam, K.S., and Govindaraj, A.: Graphene, the new nanocarbon. J. Mater. Chem. 19(17), 2457 (2009).CrossRefGoogle Scholar
Avouris, P.: Graphene: Electronic and photonic properties and devices. Nano Lett. 10(11), 4285 (2010).Google Scholar
Akhavan, O., Ghaderi, E., Aghayee, S., Fereydooni, Y., and Talebi, A.: The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 22(27), 13773 (2012).Google Scholar
Kim, J.H., Chang, W.S., Kim, D., Yang, J.R., Han, J.T., Lee, G.W., Kim, J.T., and Seol, S.K.: 3d printing of reduced graphene oxide nanowires. Adv. Mater. 27(1), 157 (2015).Google Scholar
Lin, Z., Zeng, Z., Gui, X., Tang, Z., Zou, M., and Cao, A.: Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications. Adv. Energy Mater. 6(17), 1600554 (2016).Google Scholar
Ravi, S. and Vadukumpully, S.: Sustainable carbon nanomaterials: Recent advances and its applications in energy and environmental remediation. J. Environ. Chem. Eng. 4(1), 835 (2016).CrossRefGoogle Scholar
Liu, T., Zhang, F., Song, Y., and Li, Y.: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5(34), 1770517733 (2017).Google Scholar
Xin, S., Guo, Y.G., and Wan, L.J.: Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 45(10), 1759 (2012).CrossRefGoogle ScholarPubMed
Wenzel, S., Hara, T., Janek, J., and Adelhelm, P.: Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4(9), 3342 (2011).Google Scholar
Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8(6), 500 (2009).CrossRefGoogle ScholarPubMed
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010).Google Scholar
Wu, Q., Yang, L., Wang, X., and Hu, Z.: From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50(2), 435 (2017).Google Scholar
Zheng, Z., Zhang, X., Pei, F., Dai, Y., Fang, X., Wang, T., and Zheng, N.: Hierarchical porous carbon microrods composed of vertically aligned graphene-like nanosheets for Li-ion batteries. J. Mater. Chem. A 3(39), 19800 (2015).CrossRefGoogle Scholar
Zhao, M.Q., Zhang, Q., Huang, J.Q., Tian, G.L., Nie, J.Q., Peng, H.J., and Wei, F.: Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 5, 3410 (2014).CrossRefGoogle ScholarPubMed
Doughty, D.H. and Roth, E.P.: A general discussion of Li ion battery safety. Electrochem. Soc. Interface 21(2), 37 (2012).Google Scholar
Xie, Z., He, Z., Feng, X., Xu, W., Cui, X., Zhang, J., Yan, C., Carreon, M.A., Liu, Z., and Wang, Y.: Hierarchical sandwich-like structure of ultrafine N-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl. Mater. Interfaces 8(16), 10324 (2016).CrossRefGoogle ScholarPubMed
Dong, Y., Yu, M., Wang, Z., Liu, Y., Wang, X., Zhao, Z., and Qiu, J.: A top-down strategy toward 3d carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv. Funct. Mater. 26(42), 7590 (2016).CrossRefGoogle Scholar
Yen, H-J., Tsai, H., Zhou, M., Holby, E.F., Choudhury, S., Chen, A., Adamska, L., Tretiak, S., Sanchez, T., Iyer, S., Zhang, H., Zhu, L., Lin, H., Dai, L., Wu, G., and Wang, H-L.: Structurally defined 3D nanographene assemblies via bottom-up chemical synthesis for highly effcient lithium storage. Adv. Mater. 28(46), 10250 (2016).CrossRefGoogle Scholar
Chen, Y., Li, X., Park, K., Song, J., Hong, J., Zhou, L., Mai, Y., Huang, H., and Goodenough, J.B.: Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 135(44), 16280 (2013).Google Scholar
Fang, Y., Lv, Y., Che, R., Wu, H., Zhang, X., Gu, D., Zheng, G., and Zhao, D.: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135(4), 1524 (2013).Google Scholar
Wang, Z., Yu, X., He, W., Kaneti, Y.V., Han, D., Sun, Q., He, Y., and Xiang, B.: Construction of a unique two-dimensional hierarchical carbon architecture for superior lithium-ion storage. ACS Appl. Mater. Interfaces 49(49), 33399 (2016).Google Scholar
Yang, Y., Pang, R., Zhou, X., Zhang, Y., Wu, H., and Guo, S.: Composites of chemically-reduced graphene oxide sheets and carbon nanospheres with three-dimensional network structure as anode materials for lithium ion batteries. J. Mater. Chem. 22(43), 23194 (2012).Google Scholar
Ma, H., Jiang, H., Jin, Y., Dang, L., Lu, Q., and Gao, F.: Carbon nanocages@ultrathin carbon nanosheets: One-step facile synthesis and application as anode material for lithium-ion batteries. Carbon 105, 586 (2016).Google Scholar
Zuo, Z., Kim, T.Y., Kholmanov, I., Li, H., Chou, H., and Li, Y.: Ultra-light hierarchical graphene electrode for binder-free supercapacitors and lithium-ion battery anodes. Small 11(37), 4922 (2015).Google Scholar
Chen, L., Jin, X., Wen, Y., Lan, H., Yu, X., Sun, D., and Yi, T.: Intrinsically coupled 3d nGs@CNTs frameworks as anode materials for lithium-ion batteries. Chem. Mater. 27(21), 7289 (2015).Google Scholar
Xu, J., Wang, M., Wickramaratne, N.P., Jaroniec, M., Dou, S., and Dai, L.: High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 27(12), 2042 (2015).Google Scholar
Yan, Y., Yin, Y., Guo, Y., and Wan, L.: A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4(8), 1079 (2014).Google Scholar
Ding, J., Wang, H., Li, Z., Kohandehghan, A., Cui, K., Xu, Z., Zahiri, B., Tan, X., Lotfabad, E.M., Olsen, B.C., and Mitlin, D.: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004 (2013).CrossRefGoogle ScholarPubMed
Lyu, Z., Yang, L., Xu, D., Zhao, J., Lai, H., Jiang, Y., Wu, Q., Li, Y., Wang, X., and Hu, Z.: Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Res. 8(11), 3535 (2015).Google Scholar
Xu, D., Chen, C., Xie, J., Zhang, B., Miao, L., Cai, J., Huang, Y., and Zhang, L.: A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6(6), 1501929 (2016).CrossRefGoogle Scholar
Zhang, F., Yao, Y., Wan, J., Henderson, D., Zhang, X., and Hu, L.: High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces 9(1), 391 (2017).Google Scholar
Liu, T., Zhu, C., Kou, T., Worsley, M.A., Qian, F., Condes, C., Duoss, E.B., Spadaccini, C.M., and Li, Y.: Ion intercalation induced capacitance improvement for graphene based supercapacitor electrodes. ChemNanoMat 2(7), 635 (2016).Google Scholar
Zhang, F., Liu, T., Hou, G., Kou, T., Yue, L., Guan, R., and Li, Y.: Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9(10), 2875 (2016).Google Scholar
Zhang, F., Liu, T., Li, M., Yu, M., Luo, Y., Tong, Y., and Li, Y.: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17(5), 3097 (2017).CrossRefGoogle ScholarPubMed
Chen, C., Zhang, Y., Li, Y., Dai, J., Song, J., Yao, Y., Gong, Y., Kierzewski, I., Xie, J., and Hu, L.: All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538 (2017).Google Scholar
Zhu, C., Liu, T., Qian, F., Han, T.Y., Duoss, E.B., D Kuntz, J., Spadaccini, C.M., Worsley, M.A., and Li, Y.: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16(6), 3448 (2016).Google Scholar
Huang, Z., Liu, T., Song, Y., Li, Y., and Liu, X.: Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale 9, 13119 (2017).CrossRefGoogle ScholarPubMed
Pandolfo, A.G. and Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11 (2006).Google Scholar
Wang, D., Li, F., Liu, M., Lu, G., and Cheng, H.: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 47(2), 373 (2008).Google Scholar
Guo, C. and Li, C.: A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ. Sci. 4(11), 4504 (2011).Google Scholar
Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N.O., Huang, Y., and Duan, X.: Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4544 (2014).Google Scholar
Liang, Y., Chen, L., Zhuang, D., Liu, H., Fu, R., Zhang, M., Wu, D., and Matyjaszewski, K.: Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes. Chem. Sci. 8, 2101 (2017).Google Scholar
Yuan, Z., Peng, H., Huang, J., Liu, X., Wang, D., Cheng, X., and Zhang, Q.: Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 24(39), 6244 (2015).Google Scholar
Deng, W., Hu, A., Chen, X., Zhang, S., Tang, Q., Liu, Z., Fan, B., and Xiao, K.: Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium–sulfur batteries. J. Power Sources 322, 138 (2016).CrossRefGoogle Scholar
Zheng, Z., Guo, H., Pei, F., Zhang, X., Chen, X., Fang, X., Wang, T., and Zheng, N.: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li–S batteries. Adv. Funct. Mater. 26(48), 8952 (2016).CrossRefGoogle Scholar
Huang, J., Peng, H., Liu, X., Nie, J., Cheng, X., Zhang, Q., and Wei, F.: Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium–sulfur batteries. J. Mater. Chem. A 2(28), 10869 (2014).CrossRefGoogle Scholar
Kaneti, Y.V., Tang, J., Salunkhe, R.R., Jiang, X., Yu, A., Wu, K.C-W., and Yamauchi, Y.: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29(12), 1604898 (2017).Google Scholar
Xu, F., Tang, Z., Huang, S., Chen, L., Liang, Y., Mai, W., Zhong, H., Fu, R., and Wu, D.: Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 6, 7221 (2015).Google Scholar
Xu, F., Wu, D., Fu, R., and Wei, B.: Design and preparation of porous carbons from conjugated polymer precursors. Mater. Today 20, (2017). doi: 10.1016/j.mattod.2017.04.026.Google Scholar
Lin, X., Liang, Y., Lu, Z., Lou, H., Zhang, X., Liu, S., Zheng, B., Liu, R., Fu, R., and Wu, D.: Mechanochemistry: A green, activation-free and top-down strategy to high-surface-area carbon materials. ACS Sustainable Chem. Eng. 5(10), 8535 (2017).Google Scholar
Xu, F., Xu, J., Xu, H., Lu, Y., Yang, H., Tang, Z., Lu, Z., Fu, R., and Wu, D.: Fabrication of novel powdery carbon aerogels with high surface areas for superior energy storage. Energy Storage Mater. 7, 8 (2017).Google Scholar
Xu, G., Ding, B., Nie, P., Shen, L., Dou, H., and Zhang, X.: Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 6(1), 194 (2014).Google Scholar
Zheng, G., Yang, Y., Cha, J.J., Hong, S.S., and Cui, Y.: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462 (2011).Google Scholar
Lyu, Z., Xu, D., Yang, L., Che, R., Feng, R., Zhao, J., Li, Y., Wu, Q., Wang, X., and Hu, Z.: Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy 12, 657 (2015).Google Scholar
Tang, Z., Liu, S., Lu, Z., Lin, X., Zheng, B., Liu, R., Wu, D., and Fu, R.: A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances. Chem. Commun. 53, 6764 (2017).Google Scholar