Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T15:55:27.787Z Has data issue: false hasContentIssue false

Hardness–depth profile of a carbon-implanted Ti–6Al–4V alloy and its relation to composition and microstructure

Published online by Cambridge University Press:  31 January 2011

M. Kunert
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, 70174 Stuttgart, Germany
O. Kienzle
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, 70174 Stuttgart, Germany
B. Baretzky
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, 70174 Stuttgart, Germany
S. P. Baker
Affiliation:
Department of Materials Science and Engineering, Cornell University, 129 Bard Hall, Ithaca, New York 14853–1501
E. J. Mittemeijer
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, 70174 Stuttgart, Germany
Get access

Abstract

The variation of mechanical properties (hardness, indentation modulus) within a carbon-implanted region of a Ti–6Al–4V alloy—about 350-nm thick—was, for the first time, related with the microstructure and the chemical composition with a depth accuracy as small as ±20 nm. Microstructure, chemical composition, and mechanical properties of the implanted alloy were determined using transmission electron microscopy, Auger electron spectroscopy, and nanoindentation, respectively. The microstructure within the implanted region contains TiC precipitates, the density of which changes with depth in accordance with the carbon content. The hardness depends on the precipitate density: the maximum hardness occurs at the depth where an almost continuous TiC layer had formed. The depth profiles of hardness and indentation modulus were measured using three different methods: the cross-section method (CSM); the constant-load method (CLM); and the load-variation method (LVM). Only the hardness– depth profile obtained using the CSM, in which the indentations are performed perpendicular to the hardness gradient on a cross section of the specimen, reflects the microstructural variations present in the implanted region.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bolster, R.N., Singer, I.L., and Vardiman, R.G., Surf. Coat. Technol. 33, 469 (1987).CrossRefGoogle Scholar
2Alonso, F., Arizaga, A., Quainton, S., Ugarte, J.J., Viviente, J.L., and Oñate, J.I., Surf. Coat. Technol. 74/75, 986 (1995).Google Scholar
3Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
4Kunert, M., Baretzky, B., Baker, S.P., and Mittemeijer, E.J., Met. Mater. Trans. A 32A, 1201 (2001).CrossRefGoogle Scholar
5Hirvonen, J.K., Annu. Rev. Mater. Sci. 19, 401 (1989).Google Scholar
6Ternary Alloys, in Al–Ni–Tb to An–Zn–Zr, edited by Petzow, G. and Effenberg, G. (VCH, Weinheim, Germany, 1992), Vol. 8, p. 426.Google Scholar
7Rück, D.M., Andert, N., Emig, H., Leible, K.D., Spädtke, P., Vogt, D., and Wolf, B.H., Nucl. Tracks Radiat. Meas. 19, 951 (1991).CrossRefGoogle Scholar
8Schmidt, H., Schminke, A., and Rück, D.M., Wear 209, 49 (1997).CrossRefGoogle Scholar
9MultiPak V. 5.0 (Physical Electronics, Eden Prairie, MN, 1997).Google Scholar
10Hofmann, S. and Steffen, J., Surf. Interface Anal. 14, 59 (1989).CrossRefGoogle Scholar
11Kooi, B.A. and Somers, M.A.J., Surf. Interface Anal. 21, 501 (1994).Google Scholar
12Shirley, D.A., Phys. Rev. B 5, 4709 (1972).CrossRefGoogle Scholar
13Strecker, A., Salzberger, U., and Mayer, J., Prakt. Metallogr. 30, 482 (1993).CrossRefGoogle Scholar
14Spolenak, R., Heiland, B., Witt, C., Keller, R-M., Müllner, P., and Arzt, E., Prakt. Met. Sonderband 30, 229 (1999).Google Scholar
15Stadelmann, P.A., Ultramicroscopy 21, 131 (1987).Google Scholar
16Jeanguillaume, C., Trebbia, P., and Colliex, C., Ultramicroscopy 3, 237 (1978).CrossRefGoogle Scholar
17Baker, S.P., Thin Solid Films 308–309, 289 (1997).CrossRefGoogle Scholar
18Pharr, G.M., Mater. Sci. Eng. A 253, 151 (1998).CrossRefGoogle Scholar
19Baker, S.P., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., Sanchez, J.E. Jr., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), pp. 209219.Google Scholar
20Sigmund, P., in Sputtering by Particle Bombardement, edited by Behrisch, R. (Springer-Verlag, Berlin, Heidelberg, New York, 1981), pp. 971.CrossRefGoogle Scholar
21 Surface roughness-terminology. Part 1: Surfaces and its parameters. ISO 4287/1, 1984.Google Scholar
22Bobij, M.S. and Biswas, S.K., J. Mater. Res. 13, 3227 (1998).Google Scholar
23Digital Instruments Software V.4.31r7 (Digital Instruments, Santa Barbara, California, 1997).Google Scholar
24Mayer, J., Eur. Microsc. Anal. 9, 21 (1993).Google Scholar
25Haas, T.W., Grant, J.T., and Dooley, G.J., J. Appl. Phys. 43, 1853 (1972).Google Scholar
26Binary Alloy Phase Diagrams, 2nd ed., edited by Massalski, T.B. (ASM International, Materials Park, Ohio, 1990), Vol. 1.Google Scholar
27Qiu, X., Dodd, R.A., Conrad, J.R., Chen, A., and Worzala, F.J., Nucl. Instrum. Methods Phys. Res. B56/60, 951 (1991).CrossRefGoogle Scholar
28Vardiman, R.G. and Kant, R.A., J. Appl. Phys. 53, 690 (1982).Google Scholar
29Sharkeev, Y.P., Didenko, A.N., and Kozlov, E.V., Surf. Coat. Technol. 65, 112 (1994).CrossRefGoogle Scholar
30Sutton, A.P. and Balluffi, R.W., Acta Metall. 35, 2177 (1987).CrossRefGoogle Scholar
31Welsch, G. and Bunk, W., Metall. Trans. A13, 889 (1982).CrossRefGoogle Scholar
32Materials Properties Handbook: Titanium Alloys. edited by Boyer, R., Welsch, G., and Collings, E.W. (ASM International, Materals Park, Ohio, 1994).Google Scholar
33Kunert, M., Baretzky, B., Baker, S.P., and Mittemeijer, E.J., in Fun-damentals of Nanoindentation and Nanotribology, edited by Baker, S.P., Burnham, N., Gerberich, W.W., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, Pennsylvania, 1998), pp. 95100.Google Scholar
34Martin, J.W., Precipitation Hardening (Butterworth-Heinemann, Oxford, United Kingdom, 1998).Google Scholar
35Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, United Kingdom, 1951).Google Scholar
36Solomon, J.S. and Braun, W.L., Surf. Sci. 51, 228 (1975).CrossRefGoogle Scholar