Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T14:53:09.611Z Has data issue: false hasContentIssue false

Hardness and Modulus Properties in Ion-beam-modified Amorphous Carbon: Temperature and Dose Rate Dependences

Published online by Cambridge University Press:  31 January 2011

Deok-Hyung Lee
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Hyukjae Lee
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Byungwoo Park
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245
Get access

Abstract

Ion implantation into amorphous carbon has been initiated to investigate the possibility of superhard carbon-nitride formation. Studies of implantation-temperature effects by 100 keV N+ or 80 keV C+ ions at 50 μA show a narrow temperature window at approximately −100 °C for the optimum surface hardness and elastic modulus (measured by nanoindentation), both values much higher than those for the unimplanted amorphous carbon. No distinguishable properties are found between nitrogen and self (carbon) implantations. At a dose rate of 5 μA, however, the optimum hardness and modulus are found at a lower implantation temperature, with a broader temperature window. The enhanced strengths are well correlated with the asymmetric diffuse peak at around 1500 cm−1 in Raman spectroscopy, and the increased ratio of sp3- over sp2-bonded carbon sites observed by electron energy loss spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cohen, M. L., Science 261, 307 (1993); A. Y. Liu and M. L. Cohen, Science 245, 841 (1989).CrossRefGoogle Scholar
2.Liu, A. Y. and Cohen, M. L., Phys. Rev. B 41, 10 727 (1990); M. L. Cohen, Phys. Rev. B 32, 7988 (1985).CrossRefGoogle Scholar
3.Zhang, Z. J., Fan, S., Huang, J., and Lieber, C. M., Appl. Phys. Lett. 68, 2639 (1996); Z. J. Zhang, S. Fan, and C. M. Lieber, Appl. Phys. Lett. 66, 3582 (1995); C. Niu, Y. Z. Lu, and C. M. Lieber, Science 261, 334 (1993).CrossRefGoogle Scholar
4.Yu, K. M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A. Y., and Wu, I. C., Phys. Rev. B 49, 5034 (1994).CrossRefGoogle Scholar
5.Li, D., Lin, X. W., Cheng, S. C., Dravid, V. P., Chung, Y. W., Wong, M. S., and Sproul, W. D., Appl. Phys. Lett. 68, 1211 (1996); M. Y. Chen, D. Li, X. Lin, V. P. Dravid, Y. W. Chung, M. S. Wong, and W. D. Sproul, J. Vac. Sci. Technol. A 11, 521 (1993).CrossRefGoogle Scholar
6.Xiong, F., Chang, R. P. H., and White, C. W., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubowski, J. J., and Norton, D. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 587.Google Scholar
7.Sjöström, H., Stafström, S., Boman, M., and Sundgren, J. E., Phys. Rev. Lett. 75, 1336 (1995).CrossRefGoogle Scholar
8.Doll, G. L., Heremans, J. P., Perry, T. A., and Mantese, J. V., J. Mater. Res. 9, 85 (1994).CrossRefGoogle Scholar
9.Iwaki, M., Takahashi, K., and Sekiguchi, A., J. Mater. Res. 5, 2562 (1990).CrossRefGoogle Scholar
10.Liu, A. Y. and Wentzcovitch, R. M., Phys. Rev. B 50, 10 362 (1994).Google Scholar
11. The amorphous carbon, obtained from Kobe Steel Co. through KAO Information Systems Co., was produced by HIP process. The density is lower than single-crystal graphite (2.267 g/cm3), but higher than normal amorphous (or glassy) carbon (1.3–1.5 g/cm3).Google Scholar
12.Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
13. RUMP, by Doolittle, L. and Thompson, M. O. (Cornell University, 1985).Google Scholar
14.Lee, D. H., Park, B., Poker, D. B., Riester, L., Feng, Z. C., and Baglin, J. E. E., J. Appl. Phys. 80, 1480 (1996).CrossRefGoogle Scholar
15.Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
16.Doerner, M. F. and Nix, D. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
17.Elman, B. S., Dresselhaus, M. S., Dresselhaus, G., Maby, E. W., and Mazurek, H., Phys. Rev. B 24, 1027 (1981).CrossRefGoogle Scholar
18.Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
19.Parmigiani, F., Kay, E., and Seki, H., J. Appl. Phys. 64, 3031 (1988).CrossRefGoogle Scholar
20.McCulloch, D. G., Prawer, S., and Hoffman, A., Phys. Rev. B 50, 5905 (1994); D. G. McCulloch, A. Hoffman, and S. Prawer, J. Appl. Phys. 74, 135 (1993); D. G. McCulloch and S. Prawer, J. Appl. Phys. 78, 3040 (1995).CrossRefGoogle Scholar
21.Davies, J. A., in Surface Modification and Alloying by Laser, Ion and Electron Beams, edited by Poate, J. M., Foti, G., and Jacobson, D. C. (Plenum, New York, 1983), p. 189.CrossRefGoogle Scholar
22.Ehrhardt, H., Surf. Coating Technol. 74–75, 29 (1995).CrossRefGoogle Scholar
23.Jackson, K. A., J. Mater. Res. 3, 1218 (1988).CrossRefGoogle Scholar