Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T11:39:36.547Z Has data issue: false hasContentIssue false

Hard protective overlayers on viscoelastic-plastic substrates

Published online by Cambridge University Press:  31 January 2011

W. W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
A. Strojny
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
K. Yoder
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
L-S. Cheng
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

A simple superposition solution for a point-loaded elastic plate on a soft substrate is proposed. The solution considers a “drumhead” being elastically bent into a compliant substrate that is viscoelastic-plastic. With simplifying assumptions it is found that the drumhead and substrate support loads proportional to δ1/2 and δ3/2, respectively, where δ is the vertical point displacement. At fixed displacement, relaxation proceeds at high loads, but if sufficiently unloaded, recovery or increased load results with time. Qualitative verification of the time-dependent drumhead solution is shown by relaxation and recovery data on polycarbonate covered by polysiloxane, composite or diamondlike carbon (DLC) coatings, and films.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ramsey, P.M., Chandler, H. W., and Page, T.F., Surf. Coat. Technol. 29, 504 (1991).CrossRefGoogle Scholar
2.McGurk, M.R., Chandler, H.W., Twiggs, P. C., and Page, T. F., Surf. Coat. Technol. 68/69, 576 (1994).CrossRefGoogle Scholar
3.McGurk, M.R. and Page, T.F., Surf. Coat. Technol. 92, 87 (1997).CrossRefGoogle Scholar
4.Bhattacharya, A. K. and Nix, W. D., Int. J. Solids Struct. 24 (12), 1287 (1988).CrossRefGoogle Scholar
5.Sneddon, I. N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
6.Doerner, M.F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
7.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
8.King, R. B., Int. J. Solids Struct. 23 (12), 1657 (1987).CrossRefGoogle Scholar
9.Field, J. S. and Swain, M.V, J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
10.Stone, D., Yoder, K. B., and Sproul, W. D., J. Vac. Sci. Technol. A 9 (4), 2543s (1991).CrossRefGoogle Scholar
11.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
12.Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W.W., J. Mater. Res. 8, 1291 (1993).CrossRefGoogle Scholar
13.Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, J., Wright, A., Bahr, D., and Gerberich, W. W., Acta Mater. 47 (1), 333 (1999).CrossRefGoogle Scholar
14.Burnett, P. J. and Rickerby, D. S., Thin Solid Films 148, 41 (1987).CrossRefGoogle Scholar
15.Zielinski, W., Huang, H., and Gerberich, W. W., J. Mater. Res. 8, 1300 (1993).CrossRefGoogle Scholar
16.Bahr, D. and Gerberich, W. W., Metall. Mater. Trans. A 27A, 3793 (1996).CrossRefGoogle Scholar
17.Johnson, K. L., J. Mech. Phys. Solids 18, 115 (1970).CrossRefGoogle Scholar
18.Cheng, L., Scriven, L. E., and Gerberich, W.W., submitted to WCCM IV, Buenos Aires, Argentina, 1998.Google Scholar
19.Strojny, A. and Gerberich, W. W., in Fundamentals of Nano-indentation and Nanotribology, edited by Moody, N. R., Gerberich, W. W., Baker, S. P., and Burnham, N. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 159.Google Scholar
20.Cheng, L., Scriven, L. E., and Gerberich, W. W., in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N. R., Gerberich, W. W., Baker, S. P., and Burnham, N. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 193.Google Scholar
21.Hellwege, K. H., Knappe, W., Paul, F., and Semjonow, V., Rheol. Acta 6, 165 (1967).CrossRefGoogle Scholar
22.Lucas, B. N., Oliver, W. C., Pharr, G. M., and Loubet, J. L., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J. E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 233.Google Scholar
23.Olaf, J. M., Sester, M., Honig, A., and L'Huiller, P., Comput. Mater. Sci. 3 (2), 218 (1994).CrossRefGoogle Scholar
24.Yang, F., Li, J. C. M., and Shih, C. W., Mater. Sci. Eng. A201, 50 (1995).CrossRefGoogle Scholar
25.Chechenin, N. G., Bøttiger, J., and Krog, J. P., Thin Solid Films 261, 219 (1995).CrossRefGoogle Scholar
26.Jennings, R. M., Taylor, J. F., and Farris, R. G., J. Adhes. 49, 57 (1995).CrossRefGoogle Scholar
27.Jämting, A. K., Bell, J. M., Swain, M. V., and Schwarzer, N., Thin Solid Films 308/309, 304 (1997).CrossRefGoogle Scholar
28.Strojny, A., Xia, X., Tsou, A., Scriven, L. E., and Gerberich, W.W., J. Adhes. Sci. Technol. 12 (12), 1299 (1998).CrossRefGoogle Scholar
29.Li, J. C. M., Can. J. Phys. 45, 493 (1967).CrossRefGoogle Scholar
30.Gibbs, G. S., Philos. Mag. 13, 317 (1966).CrossRefGoogle Scholar
31.MacEwen, S. R., Kupcis, D. A., and Ramaswami, B., Scripta Metall. 3, 441 (1969).CrossRefGoogle Scholar
32.Gerberich, W. W., Robach, J., Strojny, A., Yoder, K., and Cheng, L., unpublished.Google Scholar
33.Gerberich, W. W., Yu, W., Kramer, D., Strojny, A., Bahr, D., Lilleodden, E. T., and Nelson, J., J. Mater. Res. 13, 421 (1998).CrossRefGoogle Scholar
34.Marsh, D. M., Proc. Roy. Soc. A 279, 417 (1963).Google Scholar
35.Giannakopoulas, A. E., Larsson, P-L., and Vestergaard, R., Int. J. Solids Struct. 31, 2679 (1994).Google Scholar
36.Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P., and Wyrobek, J. T., Acta Mater. 44, 3585 (1996).Google Scholar