Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T21:53:26.595Z Has data issue: false hasContentIssue false

Grain growth behavior of a nanostructured 5083 Al–Mg alloy

Published online by Cambridge University Press:  31 January 2011

V. L. Tellkamp
Affiliation:
University of California—Irvine, Chemical, Biochemical and Materials Science Department, Irvine, California 92697
S. Dallek
Affiliation:
Naval Surface Warfare Center, Carderock Division, Code 683, 9500 MacArthur Boulevard, West Bethesda, Maryland 20817-5700
D. Cheng
Affiliation:
University of California—Irvine, Chemical, Biochemical and Materials Science Department, Irvine, California 92697
E. J. Lavernia
Affiliation:
University of California—Irvine, Chemical, Biochemical and Materials Science Department, Irvine, California 92697
Get access

Abstract

A nanostructured 5083 Al–Mg alloy powder was subjected to various thermal heat treatments in an attempt to understand the fundamental mechanisms of recovery, recrystallization and grain growth as they apply to nanostructured materials. A low-temperature stress relaxation process associated with reordering of the grain boundaries was found to occur at 158 °C. A bimodal restructuring of the grains occurred at 307 °C for the unconstrained grains and 381 °C for the constrained grains. An approximate activation energy of 5.6 kJ/mol was found for the metastable nanostructured grains, while an approximate activation energy of 142 kJ/mol was found above the restructuring temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Handbook of Nanostructured Materials and Nanotechnology, edited by Nalwa, H.S. (Academic Press, San Diego, CA, 2000).Google Scholar
2.Suryanarayana, C., Int. Mat. Rev. 40, 41 (1995).CrossRefGoogle Scholar
3.Gleiter, H., Prog. in Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
4.Weissmuller, J., in Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D.L. (TMS, Warrendale, PA, 1996).Google Scholar
5.Perez, R., Huang, B., and Lavernia, E.J., Nanostruct. Mater. 7, 56 (1996).Google Scholar
6.Perez, R., Jiang, H.G., and Lavernia, E.J., Nanostruct. Mater. 9, 7 (1997).CrossRefGoogle Scholar
7.Jiang, H.G., Lau, M.L., and Lavernia, E.J., Nanostruct. Mater. 10, 169 (1998).CrossRefGoogle Scholar
8.Perez, R.J., Jiang, H.G., Dogan, C.P., and Lavernia, E.J., Metall. Trans. A 29A, 2469 (1998).CrossRefGoogle Scholar
9.Huang, B., Perez, R.J., Hu, H., and Lavernia, E.J., Mater. Sci. Eng. A 255, 124 (1998).CrossRefGoogle Scholar
10.Callister, W.D. Jr., Materials Science and Engineering— An Introduction, 3rd ed. (John Wiley & Sons, New York, 1994), pp. 168174.Google Scholar
11.Fecht, H.J., Hellstern, E., Fu, Z., and Johnson, W.L., Metall. Trans. A 21A, 2333 (1990).CrossRefGoogle Scholar
12.Huang, B-L. and Lavernia, E.J., J. Mater. Syn. Proc. 3, 1 (1995).Google Scholar
13.Koch, C.C., Ann. Rev. Mater. Sci. 19, 121 (1989).CrossRefGoogle Scholar
14.Koch, C.C., Nanostruct. Mater. 2, 109 (1993).CrossRefGoogle Scholar
15.Luton, M.J., Jayanth, C.S., Disko, M.M., Matras, S., and Vallone, J., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L.E., Polk, D.E., Siegel, R.W., and Kear, B.H. (Mat. Res. Soc. Symp. Proc., 132, Pittsburgh, PA, 1989), pp. 7986.Google Scholar
16.Susegg, O., Hellum, E., Olsen, A., and Luton, M.J., Phil. Mag. A, 68, 367 (1993).CrossRefGoogle Scholar
17.Malow, T.R. and Koch, C.C., in Synthesis and Processing of Nanocrystalline Powder, edited by Bourell, D.L. (TMS, Warrendale, PA, 1996).Google Scholar
18.Gryaznov, V.G. and Trusov, L.I., Prog. in Mater. Sci. 37, 289 (1993).CrossRefGoogle Scholar
19.Brandes, E.A., Smithell–s Metals Reference Book (Butterworth-Heinemann, London, United Kingdom, 1992).Google Scholar
20.Cullity, B.D., Elements of X-ray Diffraction, (Addison-Wesley, Reading, MA, 1978), p. 101.Google Scholar
21.Krill, C.E. and Birringer, R., Philos. Mag. A 77, 621 (1997).CrossRefGoogle Scholar
22.Ozawa, T., J. Therm. Anal. 2, 301 (1970).CrossRefGoogle Scholar
23.Wang, J., Iwahashi, Y., Horita, Z., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G., Acta Mater. 44, 2973 (1996).CrossRefGoogle Scholar
24.Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures (John Wiley & Sons, New York, 1974), pp. 661665.Google Scholar
25.Li, Y., Nutt, S.R., and Mohamed, F.A., Acta Mater. 45, 2607 (1997).CrossRefGoogle Scholar
26.Weissmuller, J., Loffler, J., and Kleber, M., Nanostruct. Mater. 6, 105 (1995).CrossRefGoogle Scholar
27.Tschope, A. and Birringer, R.J., Appl. Phys. 71, 5391 (1992).CrossRefGoogle Scholar
28.Qin, X.Y., Wu, X.J., and Cheng, L.F., Nanostruct. Mater. 2, 99 (1993).CrossRefGoogle Scholar
29.Krill, C.E., Klein, R., Janes, S., and Birringer, R., Mater. Sci. Forum 179–181, 443 (1995).CrossRefGoogle Scholar
30.Weissmuller, J., NanoStructured Mat., 3, 261 (1993).CrossRefGoogle Scholar