Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T03:14:07.609Z Has data issue: false hasContentIssue false

Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review

Published online by Cambridge University Press:  17 August 2018

Zongyang Lyu
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
Xuesong Fan
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
Chanho Lee
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
Shao-Yu Wang
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
Rui Feng
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
Peter K. Liaw*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The basic principle of high-entropy alloys (HEAs) is that high mixing entropies of solid-solution phases enhance the phase stability, which renders us a new strategy on alloy design. The current research of HEAs mostly emphasizes mechanical behavior at room and higher temperatures. Relatively fewer papers are focused on low-temperature behaviors, below room temperature. However, based on the published papers, we can find that the low-temperature properties of HEAs are generally excellent. The great potential for cryogenic applications could be expected on HEAs. In this article, we summarized and discussed the mechanical behaviors and deformation mechanisms, as well as stacking-fault energies, of HEAs at low temperatures. The comparison of low-temperature properties of HEAs and conventional alloys will be provided. Future research directions will be suggested at the end.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Diao, H.Y., Feng, R., Dahmen, K.A., and Liaw, P.K.: Fundamental deformation behavior in high-entropy alloys: An overview. Curr. Opin. Solid State Mater. Sci. 21, 252 (2017).CrossRefGoogle Scholar
Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y.: High-Entropy Alloys: Fundamentals and Applications (Springer International Publishing, Switzerland, 2016).CrossRefGoogle Scholar
Yeh, J.W.: Alloy design strategies and future trends in high-entropy alloys. JOM 65, 1759 (2013).CrossRefGoogle Scholar
He, J.Y., Wang, H., Huang, H.L., Xu, X.D., Chen, M.W., Wu, Y., Liu, X.J., Nieh, T.G., An, K., and Lu, Z.P.: A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187 (2016).CrossRefGoogle Scholar
Wang, Q., Ma, Y., Jiang, B., Li, X., Shi, Y., Dong, C., and Liaw, P.K.: A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scr. Mater. 120, 85 (2016).CrossRefGoogle Scholar
Ma, Y., Wang, Q., Jiang, B.B., Li, C.L., Hao, J.M., Li, X.N., Dong, C., and Nieh, T.G.: Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater. 147, 213 (2018).CrossRefGoogle Scholar
Ma, Y., Jiang, B., Li, C., Wang, Q., Dong, C., Liaw, P.K., Xu, F., and Sun, L.: The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys. Metals 7, 57 (2017).CrossRefGoogle Scholar
Sun, H.F., Wang, C.M., Zhang, X., Li, R.Z., and Ruan, L.Y.: Study of the microstructure and performance of high-entropy alloys AlxFeCuCoNiCrTi. Mater. Res. Innovations 19(Suppl. 8), S8 (2015).CrossRefGoogle Scholar
Zhu, J.M., Fu, H.M., Zhang, H.F., Wang, A.M., Li, H., and Hu, Z.Q.: Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Mater. Sci. Eng., A 527, 6975 (2010).CrossRefGoogle Scholar
Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Wu, W., and Lu, Z.: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).CrossRefGoogle ScholarPubMed
He, J.Y., Liu, W.H., Wang, H., Wu, Y., Liu, X.J., Nieh, T.G., and Lu, Z.P.: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A., and Liaw, P.K.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
Tang, Z., Yuan, T., Tsai, C-W., Yeh, J-W., Lundin, C.D., and Liaw, P.K.: Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 99, 247 (2015).CrossRefGoogle Scholar
Chen, P., Lee, C., Wang, S-Y., Seifi, M., Lewandowski, J.J., Dahmen, K.A., Jia, H., Xie, X., Chen, B., Yeh, J-W., Tsai, C-W., Yuan, T., and Liaw, P.K.: Fatigue behavior of high-entropy alloys: A review. Sci. China: Technol. Sci. 61, 168 (2017).CrossRefGoogle Scholar
Seifi, M., Li, D., Yong, Z., Liaw, P.K., and Lewandowski, J.J.: Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. JOM 67, 2288 (2015).CrossRefGoogle Scholar
Li, D., Li, C., Feng, T., Zhang, Y., Sha, G., Lewandowski, J.J., Liaw, P.K., and Zhang, Y.: High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 123, 285 (2017).CrossRefGoogle Scholar
Laplanche, G., Gadaud, P., Horst, O., Otto, F., Eggeler, G., and George, E.P.: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348 (2015).CrossRefGoogle Scholar
Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., and George, E.P.: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292 (2017).CrossRefGoogle Scholar
Haglund, A., Koehler, M., Catoor, D., George, E.P., and Keppens, V.: Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics 58, 62 (2015).CrossRefGoogle Scholar
Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).CrossRefGoogle Scholar
Li, Z., Zhao, S., Diao, H., Liaw, P.K., and Meyers, M.A.: High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure. Sci. Rep. 7, 42742 (2017).CrossRefGoogle ScholarPubMed
Zhang, W., Liaw, P.K., and Zhang, Y.: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).CrossRefGoogle Scholar
Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
Pickering, E.J. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).CrossRefGoogle Scholar
Shi, Y., Yang, B., and Liaw, P.K.: Corrosion-resistant high-entropy alloys: A review. Metals 7, 43 (2017).CrossRefGoogle Scholar
Lu, Z.P., Wang, H., Chen, M.W., Baker, I., Yeh, J.W., Liu, C.T., and Nieh, T.G.: An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics 66, 67 (2015).CrossRefGoogle Scholar
Li, W., Liu, P., and Liaw, P.K.: Microstructures and properties of high-entropy alloy films and coatings: A review. Mater. Res. Lett. 6, 199 (2018).CrossRefGoogle Scholar
Wu, Z., Troparevsky, M.C., Gao, Y.F., Morris, J.R., Stocks, G.M., and Bei, H.: Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 267 (2017).CrossRefGoogle Scholar
Praveen, S. and Kim, H.S.: High-entropy alloys: Potential candidates for high-temperature applications—An overview. Adv. Eng. Mater. 20, 1700645 (2018).CrossRefGoogle Scholar
Qiao, J.W., Ma, S.G., Huang, E.W., Chuang, C.P., Liaw, P.K., and Zhang, Y.: Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. Mater. Sci. Forum 688, 419 (2011).CrossRefGoogle Scholar
Rösler, J., Harders, H., and Baeker, M.: Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2007).Google Scholar
Li, D. and Zhang, Y.: The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24 (2016).CrossRefGoogle Scholar
Zhang, Z., Sheng, H., Wang, Z., Gludovatz, B., Zhang, Z., George, E.P., Yu, Q., Mao, S.X., and Ritchie, R.O.: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 8, 14390 (2017).CrossRefGoogle ScholarPubMed
Thurston, K.V.S., Gludovatz, B., Hohenwarter, A., Laplanche, G., George, E.P., and Ritchie, R.O.: Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics 88, 65 (2017).CrossRefGoogle Scholar
Lin, Q., Liu, J., An, X., Wang, H., Zhang, Y., and Liao, X.: Cryogenic-deformation-induced phase transformation in an FeCoCrNi high entropy alloy. Mater. Res. Lett. 6, 236 (2018).CrossRefGoogle Scholar
Stepanov, N., Tikhonovsky, M., Yurchenko, N., Zyabkin, D., Klimova, M., Zherebtsov, S., Efimov, A., and Salishchev, G.: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8 (2015).CrossRefGoogle Scholar
Jo, Y.H., Jung, S., Choi, W.M., Sohn, S.S., Kim, H.S., Lee, B.J., Kim, N.J., and Lee, S.: Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. 8, 15719 (2017).CrossRefGoogle Scholar
Smith, T.M., Hooshmand, M.S., Esser, B.D., Otto, F., McComb, D.W., George, E.P., Ghazisaeidi, M., and Mills, M.J.: Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy. Acta Mater. 110, 352 (2016).CrossRefGoogle Scholar
Liu, S.F., Wu, Y., Wang, H.T., He, J.Y., Liu, J.B., Chen, C.X., Liu, X.J., Wang, H., and Lu, Z.P.: Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics 93, 269 (2018).CrossRefGoogle Scholar
Aerts, E., Delavignette, P., Siems, R., and Amelinckx, S.: Stacking fault energy in silicon. J. Appl. Phys. 33, 3078 (1962).CrossRefGoogle Scholar
Seo, W., Jeong, D., Sung, H., and Kim, S.: Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K. Mater. Charact. 124, 65 (2017).CrossRefGoogle Scholar
Nagai, K., Yuri, T., Ogata, T., Umezawa, O., Ishikawa, K., Nishimura, T., Mizoguch, T., and Ito, Y.: Cryogenic mechanical properties of Ti–6Al–4V alloys with three levels of oxygen content. ISIJ Int. 31, 882 (1991).CrossRefGoogle Scholar