Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T12:35:30.906Z Has data issue: false hasContentIssue false

Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy

Published online by Cambridge University Press:  31 January 2011

Xiaoling Zhang*
Affiliation:
Department MTM, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, People's Republic of China
W. Lauwerens
Affiliation:
Institute for Materials Research, Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium, and Center for Scientific and Research in Metal Manufacturing, B-3590 Diepenbeek, Belgium
L. Stals
Affiliation:
Institute for Materials Research, Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium
Jiawen He
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, People's Republic of China
J-P. Celis
Affiliation:
Department Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
*
a)Address all correspondence to this author.
Get access

Abstract

The fretting wear of sulphur-deficient MoSx coatings with different crystallographic orientations has been investigated in ambient air of controlled relative humidity. The coefficient of friction and the wear rate of MoSx coatings sliding against corundum depend not only on fretting parameters like contact stress, fretting frequency, and relative humidity, but also strongly on the crystallographic orientation of the coatings. For randomly oriented MoSx coatings, the coefficient of friction and the wear rate increased significantly with increasing relative humidity. In contrast, basal-oriented MoSx coatings were less sensitive to relative humidity. The coefficient of friction of both types of MoSx coatings decreased on sliding against corundum with increasing contact stress and decreasing fretting frequency. A correlation between dissipated energy and wear volume is proposed. This approach allows detection in a simple way of differences in fretting wear resistance between random- and basal-oriented MoSx coatings tested in ambient air of different relative humidity.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hilton, M.R. and Fleischauer, P.D., Surf. Coat. Technol. 54–55, 435 (1982).Google Scholar
2.Pope, L.E. and Panitz, J.K.G., Surf. Coat. Technol. 36, 341 (1988).CrossRefGoogle Scholar
3.Nabot, J.Ph., Aubert, A., Gillet, R., and Renaux, Ph., Surf. Coat. Technol. 43/44, 629 (1990).Google Scholar
4.Stupp, B.C., Thin Solid Films 84, 257 (1981).CrossRefGoogle Scholar
5.Spalvins, T., Thin solid Films 118, 375 (1984).CrossRefGoogle Scholar
6.Renevier, N.M., Fox, V.C., Teer, D.G., and Hampshire, J., Surf. Coat. Technol. 127, 24 (2000).CrossRefGoogle Scholar
7.Hilton, M.R., Bauser, R., Didziulis, S.V., Dugger, M.T., Keem, J.M., and Scholhamer, J., Surf. Coat. Technol. 53, 13 (1992).CrossRefGoogle Scholar
8.Kobs, K., Dimigen, H., Hubsch, H., Tolle, H.J., Leutenecker, R., and Ryssel, H., Mater. Sci. Eng. 90, 281 (1987).CrossRefGoogle Scholar
9.Jervis, T.R., Hirvonen, J-P., and Nastasi, M., J. Mater. Res. 6, 1350 (1991).CrossRefGoogle Scholar
10.Weise, G., Teresiak, A., Bacher, I., Markschlager, P., and Kampschulte, G., Surf. Coat. Technol. 76–77, 382 (1995).CrossRefGoogle Scholar
11.Wang, D-Y., Chang, C-L., Chen, Z-Y., and Ho, W-Y., Surf. Coat. Technol. 120–121, 629 (1999).CrossRefGoogle Scholar
12.Simmonds, M.C., Simmonds, A., Van Swyenhoven, H., Pfluger, E., and Mikhailov, S., Surf. Coat. Technol. 108–109, 340 (1998).CrossRefGoogle Scholar
13.Gilmore, R., Baker, M.A., Gibson, P.N., Gissler, X., Stoiber, M., Losbichler, P., and Mitterer, C., Surf. Coat. Technol. 108–109, 345 (1998).CrossRefGoogle Scholar
14.Rechberger, J. and Brunner, P., Surf. Coat. Technol. 62, 393 (1993).CrossRefGoogle Scholar
15.Wahl, K.J., Belin, M., and Singer, I.L., Wear 214, 212 (1998).CrossRefGoogle Scholar
16.Celis, J.P., Stals, L., Vancoille, E., and Mohrbacher, H., Surf. Eng. 14, 205 (1998).CrossRefGoogle Scholar
17.Mohrbacher, H., Blanpain, B., Celis, J-P., and Roos, J.R., Wear 180, 43 (1995).CrossRefGoogle Scholar
18.Zhang, X.L., Vitchev, R., Lauwerens, W., Stals, L., He, J.W., and Celis, J-P., Thin Solid Films 396, 69 (2001).CrossRefGoogle Scholar
19.Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., and Stupp, B.C., Appl. Phys. Lett. 57, 995 (1990).CrossRefGoogle Scholar
20.Grosseau-Poussard, J.L., Moine, P., and Brendle, M., Thin Solid Films 307, 163 (1997).CrossRefGoogle Scholar
21.Lancaster, J.K., ASLE Trans. 18, 187 (1975).CrossRefGoogle Scholar
22.Roberts, E.W., Thin Solid Films 181, 461 (1989).CrossRefGoogle Scholar
23.Zhuang, D. and Liu, J., Tribology 15, 341 (1995).Google Scholar
24.Barry, H.F. and Binkelman, J.P., Lubric. Eng. 22, 139 (1966).Google Scholar
25.Huq, M.Z. and Celis, J.P., Wear 225–229, 53 (1999).CrossRefGoogle Scholar
26.Xu, G., Zhou, Z., Liu, J., and Ma, X., Wear 225–259, 46 (1999).Google Scholar
27.Muller, C., Menoud, C., Maillat, M., and Hintermann, H.E., Surf. Coat. Technol. 36, 351 (1988).CrossRefGoogle Scholar
28.Hilton, M.R., Bauer, R., and Fleischauer, P.D., Thin Solid Films 188, 219 (1990).CrossRefGoogle Scholar
29.Christy, R.I. and Ludwig, H.R., Thin Solid Films 64, 223 (1979).CrossRefGoogle Scholar
30.Spalvins, T., Thin Solid Films 90, 17 (1982).Google Scholar
31.Singer, I.L., Fayeulle, S., and Ehni, P.D., Wear 195, 7 (1996).CrossRefGoogle Scholar