Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T08:21:30.987Z Has data issue: false hasContentIssue false

Formation and mechanical properties of Cu–Hf–Ti bulk glassy alloys [Article Retracted]

Published online by Cambridge University Press:  28 March 2011

Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan and Inoue Superliquid Glass Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Sendai 982–0807, Japan
Wei Zhang
Affiliation:
Inoue Superliquid Glass Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Sendai 982–0807, Japan
Tao Zhang
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
Kei Kurosaka
Affiliation:
Graduate School, Tohoku University, Sendai 980–8577, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-strength Cu-based bulk glassy alloys were formed in the Cu–Hf–Ti system by the copper mold casting and melt clamp forging methods. The maximum diameter is 4 mm for the Cu60Hf25Ti15 alloy. The substitution of Hf in the Cu60Hf40 alloy by Ti causes an increase in the glass-forming ability (GFA). As the Ti content increases, the glass transition temperature (Tg) decreases, while the crystallization temperature (Tx) shows a maximum at 5% Ti and then decreases, resulting in a maximum supercooled liquid region ΔTx (= TxTg) of 78 K at 5% Ti. The liquidus temperature (T1) has a minimum of 1172 K around 20% Ti, and hence, a maximum Tg//T1 of 0.62 is obtained at 20% Ti. The high GFA was obtained at the compositions with high Tg/T1. The bulk glassy alloy exhibits tensile fracture strength of 2130 MPa, compressive fracture strength of 2160 MPa, and compressive plastic elongation of 0.8 to 1.6%. The new Cu-based bulk glassy alloys with high Tg/T1 above 0.60, high fracture strength above 2100 MPa, and distinct plastic elongation are encouraging for future development as a new type of bulk glassy alloy that can be used for structural materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

References

REFERENCES

1Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 30, 965 (1989).CrossRefGoogle Scholar
2Inoue, A., Ohtera, K., Kita, K., and Masumoto, T., Jpn. J. Appl. Phys. 27, L2248 (1988).CrossRefGoogle Scholar
3Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 31, 425 (1990).CrossRefGoogle Scholar
4Inoue, A., Kato, A., Zhang, T., Kim, S.G., and Masumoto, T., Mater. Trans. JIM 32, 609 (1991).CrossRefGoogle Scholar
5Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 31, 177 (1990).CrossRefGoogle Scholar
6Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
7Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., and Masumoto, T., Mater. Lett. 19, 131 (1994).CrossRefGoogle Scholar
8Inoue, A. and Gook, G.S., Mater. Trans. JIM 36, 1180 (1995).CrossRefGoogle Scholar
9Inoue, A., Nishiyama, N., and Matsuda, T., Mater. Trans. JIM 37, 181 (1996).CrossRefGoogle Scholar
10Wang, X.M. and Inoue, A., Mater. Trans. JIM 41, 542 (2000).Google Scholar
11Itoi, T. and Inoue, A., Mater. Trans. JIM 38, 359 (1997).Google Scholar
12Inoue, A., Ohtera, K., Tsai, A.P., and Masumoto, T., Jpn. J. Appl. Phys. 27, L280 (1988).CrossRefGoogle Scholar
13He, Y., Poon, S.J., and Shiflet, G.J., Science 23, 1640 (1988).CrossRefGoogle Scholar
14Inoue, A., Oguchi, M., Matsuzaki, K., and Masumoto, T., Int. J. Rapid Solidif. 1, 273 (19841985).Google Scholar
15Inoue, A., Matsumoto, N., and Masumoto, T., Mater. Trans. JIM 31, 493 (1990).CrossRefGoogle Scholar
16Inoue, A., Yana, N., and Masumoto, T., J. Mater. Sci. 19, 3786 (1984).CrossRefGoogle Scholar
17Inoue, A., Shibata, T., and Zhang, T., Mater. Trans. JIM 36, 1420 (1995).CrossRefGoogle Scholar
18Lin, X.H. and Johnson, W.L., J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
19Zhang, T. and Inoue, A., Mater. Trans. JIM 40, 301 (1999).CrossRefGoogle Scholar
20Li, C., Saida, J., Kiminami, M., and Inoue, A., J. Non-Cryst. Solids 261, 108 (2000).CrossRefGoogle Scholar
21Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Mater. Trans. 42, 1149 (2001).CrossRefGoogle Scholar
22Inoue, A., Mater. Trans. JIM 36, 866 (1995).CrossRefGoogle Scholar
23Inoue, A., Mater. Sci. Eng. A 226–228, 357 (1997).CrossRefGoogle Scholar
24Inoue, A., Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
25Metals Databook, edited by Japan Institute of Metals (Maruzen, Tokyo, Japan, 1983), p. 12.Google Scholar
26Inoue, A. and Makabe, E., Japanese Patent, 3011904 (1997).Google Scholar
27Kakiuchi, H., Inoue, A., Onuki, M., Takano, Y., and Yamaguchi, T., Mater. Trans. JIM 42, 678 (2001).CrossRefGoogle Scholar
28Inoue, A., Suryanarayana, C., and Masumoto, T., J. Mater. Sci. 16, 1391 (1981).CrossRefGoogle Scholar
29Metals Handbook, edited by Japan Institute of Metals (Maruzen, Tokyo, Japan, 2000), p. 365.Google Scholar
30Metals Handbook, edited by Japan Institute of Metals (Maruzen, Tokyo, 2000), p. 331.Google Scholar
31Zhang, T. and Inoue, A., Mater. Trans. JIM 39, 1230 (1998).CrossRefGoogle Scholar
32Zhang, T. and Inoue, A., Mater. Trans. JIM 39, 859 (1998).Google Scholar
33Conner, R.D., Choi Kim, H., and Johnson, W.L., J. Mater. Res. 14, 3292 (1999).CrossRefGoogle Scholar
34Metals Databook, edited by Japan Institute of Metals (Maruzen, Tokyo, Japan, 1983), p. 8.Google Scholar
35de Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K., Cohesion in Metals (North-Holland, Amsterdam, The Netherlands, 1988).Google Scholar
36Chen, H.S., Rep. Prog. Phys. 43, 353 (1980).CrossRefGoogle Scholar