Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:00:02.891Z Has data issue: false hasContentIssue false

Enhanced crystallization and phase transformation of amorphous silicon nitride under high pressure

Published online by Cambridge University Press:  31 January 2011

Ya-Li Li*
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110015, People's Republic of China
Yong Liang
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110015, People's Republic of China
Fen Zheng
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110015, People's Republic of China
Xian-Feng Ma
Affiliation:
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 159 Renming Street, Changchun 130022, People's Republic of China
Suo-Jing Cui
Affiliation:
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 159 Renming Street, Changchun 130022, People's Republic of China
Liling Sun
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Bejing 100080, People's Republic of China
Get access

Abstract

The crystallization and phase transformation of amorphous Si3N4 ceramics under high pressure (1.0–5.0 GPa) between 800 and 1700 °C were investigated. A greatly enhanced crystallization and α–β transformation of the amorphous Si3N4 ceramics were evident under the high pressure, as characterized by that, at 5.0 GPa, the amorphous Si3N4 began to crystallize at a temperature as low as 1000 °C (to transform to a modification). The subsequent a–b transformation occurred completed between 1350 and 1420 °C after only 20 min of pressing at 5.0 GPa. In contrast, under 0.1 MPa N2, the identical amorphous materials were stable up to 1400 °C without detectable crystallization, and only a small amount of a phase was detected at 1500 °C. The crystallization temperature and the a–b transformation temperatures are reduced by 200–350 °C compared to that at normal pressure. The enhanced phase transformations of the amorphous Si3N4 were discussed on the basis of thermodynamic and kinetic consideration of the effects of pressure on nucleation and growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hardie, D. and Jack, K.H., Nature (London) 180, 332 (1957).CrossRefGoogle Scholar
2.Glemser, O., Beltz, K., and Naumann, P.Z., Anorg. Allg. Chem. 291, 50 (1957).Google Scholar
3.Forgeng, W.D. and Trans, B.F., AIME 212, 343 (1958).Google Scholar
4.Turkdogan, E.T., Bills, P.M., and Tippett, V.A., J. Appl. Chem. 8, 296 (1958).CrossRefGoogle Scholar
5.Greskovich, C. and Prochazka, S., J. Am. Ceram. Soc. 60, 170 (1977).CrossRefGoogle Scholar
6.Bowen, L.J., Weston, R.J., Garruthers, T.G., and Brook, R.J., J. Mater. Sci. 13, 341 (1978).CrossRefGoogle Scholar
7.Kohatsu, I. and McCauley, J.W., Mater. Res. Bull. 9, 917 (1974).CrossRefGoogle Scholar
8.Jack, K.H., in Progress in Nitrogen Ceramics, edited by Riley, F.L. (Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1983), p. 45.CrossRefGoogle Scholar
9.Wild, S., Grieveson, P., and Jack, K.H., in Special Ceramics 5, edited by Popper, P. (Stokeon-Trent, British Ceramic Research Society, 1972), p. 385.Google Scholar
10.Colquhoun, I., Wild, S., Grieveson, P., and Jack, K.H., Proc. Br. Ceram. Soc. 22, 207 (1973).Google Scholar
11.Blegen, K., in Special Ceramics 6 (Stokeon-Trent, British Ceramic Research Society, 1975), p. 223.Google Scholar
12.Mitomo, M. and Venosono, S., J. Am. Ceram. Soc. 75, 103 (1992).CrossRefGoogle Scholar
13.Ziegler, G., Hernrich, J., and Wotting, G., J. Mater. Sci. 22, 3041 (1987).CrossRefGoogle Scholar
14.Lange, F.F., J. Am. Ceram. Soc. 56, 518 (1973).CrossRefGoogle Scholar
15.Hirano, K., Nagaoka, T., Brito, M.E., and Kanzaki, S., J. Am. Ceram. Soc. 77, 1857 (1994).CrossRefGoogle Scholar
16.Priest, H.F., Burns, F.C., Priest, G.L., and Skaar, E.C., J. Am. Ceram. Soc. 56, 395 (1973).CrossRefGoogle Scholar
17.Suematsu, H., Mitomo, M., Mitchell, T.E., Petrovic, J.J., Fukunaga, O., and Ohashi, N., J. Am. Ceram. Soc. 80, 615 (1997).CrossRefGoogle Scholar
18.Malghan, S.G., Key Eng. Mater. 56–57, 243 (1991).CrossRefGoogle Scholar
19.Komega, K., in Fine Ceramics, edited by Saito, S. (Elsevier, New York, 1985).Google Scholar
20.Seyferth, D., Strohmann, C., Tracy, H.J., and Robinson, J.L., in Synthesis and Processing of Ceramics: Scientific Issues, edited by Rhine, W.F., Shan, T.M., Gottschall, R.J., and Chen, Y. (Mater. Res. Soc. Symp. 249, Pittsburgh, PA, 1992), pp. 314.Google Scholar
21.Narula, C.K., Ceramic Precursor Technology and Its Applications (Marcel Dekker, New York, 1995), p. 83.Google Scholar
22.Seher, M., Bill, J., Aldinger, F., and Riedel, R., J. Cryst. Growth 137, 452 (1994).CrossRefGoogle Scholar
23.Riedel, R. and Seher, M., J. Eur. Ceram. Soc. 7, 21 (1991).CrossRefGoogle Scholar
24.Sawbill, H.T. and Haggerty, J.S., J. Am. Ceram. Soc. 65, C131 (1982).Google Scholar
25.Li, Y., Liang, Y., Zheng, F., Shong, X., and Hu, Z., J. Mater. Sci. Lett. 13, 1588 (1994).CrossRefGoogle Scholar
26.Zerr, A., Miehe, G., Serghiou, G., Schwarz, M., Kroke, Edwin, Riedel, R., Fuess, H., Kroll, P., and Boehler, R., Nature 400, 340 (1999).CrossRefGoogle Scholar
27.Prochazka, S. and Rocco, W.A., High Temp.—High Pressures 10, 87 (1978).Google Scholar
28.Pechenick, A., Diermarini, G.J., and Danforth, S.C., J. Am. Ceram. Soc. 75, 3283 (1992).CrossRefGoogle Scholar
29.Yamada, T., Shimada, M., and Koizumi, M., Am. Ceram. Soc. Bull. 60, 1279 (1981).Google Scholar
30.Shimada, M., Ogawa, N., Koizumi, M., Dachille, F., and Roy, R., Am. Ceram. Soc. Bull. 58, 519 (1979).Google Scholar
31.Hirai, H. and Kondo, K., J. Am. Ceram. Soc. 77, 487 (1994).CrossRefGoogle Scholar
32.Turner-Adomatis, B.L. and Thadhani, N.N., Mater. Sci. Eng A 256, 298 (1998).CrossRefGoogle Scholar
33.Li, Y., Liang, Y., Zheng, F., Ma, X.F., and Cui, S.J., J. Mater. Res. 15, 988 (2000).CrossRefGoogle Scholar
34.Cannon, W.R., Danforth, S.C., Flint, J.H., Haggerty, J.S., and Mara, R.A., J. Am. Ceram. Soc. 65, 324 (1982).CrossRefGoogle Scholar
35.Cannon, W.R., Danforth, S.C., Flint, J.H., Haggerty, J.S., and Mara, R.A., J. Am. Ceram. Soc. 65, 330 (1982).CrossRefGoogle Scholar
36.Danforth, S.C., Symons, W., Nilsen, R.J., and Rimen, R.E., in Advanced Ceramic Processing and Technology, Vol. 1, edited by Binner, J.G.P. (Noyes Pub., Park Ridge, NJ, 1990), Vol. 1, p. 39.Google Scholar
37.Nilsen, K., Danforth, S.C., and Wauter, H., in Advances in Ceramics, Vol. 21: Ceramic Powder Science, edited by Messing, Q.L. (The American Ceramic Society Inc., Westerville, OH, 1987), p. 537.Google Scholar
38.Ning, X., Ph.D. Thesis, Institute of Metal Research, Chinese Academy of Sciences, (1991) (in Chinese), p. 33.Google Scholar
39.Chen, M. and Shen, R., Chin. Acta Iron Steel. 5 (1), 7782 (1993) (in Chinese).Google Scholar
40.Cui, S.J., Zhao, T.H., Yan, X.W., Ma, X.F., Zhu, Y.B., Chen, J.H., and Zhao, W., Chin. Acta High Pressure Phys. 8, 99 (1994) (in Chinese).Google Scholar
41.Gazzara, C.P. and Messier, D.R., Am. Ceram. Soc. Bull. 58, 777 (1977).Google Scholar
42.Li, Y., Liang, Y., Zheng, F., and Hu, Z., Ceram. Int. 21, 59 (1995).CrossRefGoogle Scholar
43.Kleebe, H.J., Suttor, D., Muller, H., and Ziegler, G., J. Am. Ceram. Soc. 81, 2971 (1998).CrossRefGoogle Scholar
44.Bill, J., Seitz, J., Thurn, G., Durr, J., Canel, J., Janos, B.Z., Jalowiecki, A., Sauter, D., Schempp, S., Lamparter, H.P., Mayer, J., and Aldinger, F., Phys. Status Solidi A 166, 269 (1998).3.0.CO;2-7>CrossRefGoogle Scholar
45.Paul, A., Chemistry of Glasses (Chapman and Hall, New York, 1982), p. 16.CrossRefGoogle Scholar
46.Kalia, R.K., Nakano, A., Tsuruta, K., and Vashishta, P., Phys. Rev. Lett. 78, 689 (1997).CrossRefGoogle Scholar
47.Aziz, M.J., Circone, S., and Agee, C.B., Nature 390, 596 (1997).CrossRefGoogle Scholar
48.Lu, G-Q., Nygren, E., and Aziz, M.J., J. Appl. Phys. 70 (10), 5323 (1991).CrossRefGoogle Scholar
49Grün, R., Acta Crystallogr. B 35, 800 (1979).CrossRefGoogle Scholar
50.O’Hare, P.A.G., Tomaszkiewicz, I., and Seifert, H.J., J. Mater. Res. 12, 3203 (1997).CrossRefGoogle Scholar
51.O’Hare, P.A.G., Tomaszkiewicz, I., Beck, C.M., and Serfert, H.J., J. Chem. Thermodyn. 31, 303 (1999).CrossRefGoogle Scholar
52.Ching, W., Xu, Y., Gale, J.D., and Ruhle, M., J. Am. Ceram. Soc. 81, 3199 (1998).CrossRefGoogle Scholar
53.Riley, F.L., J. Am. Ceram. Soc. 83 (2), 245 (2000).CrossRefGoogle Scholar
54.Cartz, L. and Jorgensen, J.D., J. Appl. Phys. 52, 236 (1981).CrossRefGoogle Scholar
55.Li, J.J., Topor, L., and Navrotsky, A., J. Mater. Res. 14, 1959 (2000).Google Scholar
56.Cerenius, Y., J. Am. Ceram. Soc. 82, 380 (1999).CrossRefGoogle Scholar