Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T21:16:37.496Z Has data issue: false hasContentIssue false

Encapsulation requirements to enable stable organic ultra-thin and stretchable devices

Published online by Cambridge University Press:  02 July 2018

Vera Steinmann
Affiliation:
Technology Department, Kateeva Inc., Newark 94560, California, USA
Lorenza Moro*
Affiliation:
Technology Department, Kateeva Inc., Newark 94560, California, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this paper, we will discuss stability and reliability requirements of organic electronic devices and evaluate different encapsulation approaches enabling stable organic ultra-thin and stretchable devices. We highlight the differences in requirements and encapsulation approaches for applications, including organic light emitting diode (OLED) displays, OLED lighting, photovoltaics, and sensors. Stability and reliability requirements addressed in this paper cover light management, mechanical characteristics, chemical compatibility, form factors, and durability. While flexible organic electronic devices have already been demonstrated and commercialized, so far only prototypes of ultra-thin and stretchable devices have been demonstrated. The technological progress is promising and by identifying the gaps between prototyping and product realization, we intend to stimulate further research and development in this area.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tricoli, A., Nasiri, N., and De, S.: Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 27, 1 (2017).Google Scholar
Yokota, T., Zalar, P., Kaltenbrunner, M., Jinno, H., Matsuhisa, N., Kitanosako, H., Tachibana, Y., Yukita, W., Koizumi, M., and Someya, T.: Ultra-flexible organic photonic skin. Sci. Adv. 2, 1 (2016).Google Scholar
Lipomi, D.J. and Bao, Z.: Stretchable and ultraflexible organic electronics. MRS Bull. 42, 93 (2017).Google Scholar
Rogers, J.A.: Wearable electronics: Nanomesh on-skin electronics. Nat. Nanotechnol. (2017).Google Scholar
Thiyagarajan, K. and Jeong, U.: Strategies for stretchable polymer semiconductor layers. MRS Bull. 42, 98 (2017).Google Scholar
Lee, S., Reuveny, A., Reeder, J., Lee, S., Jin, H., Liu, Q., Yokota, T., Sekitani, T., Isoyama, T., Abe, Y., Suo, Z., and Someya, T.: A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 1 (2016).Google Scholar
Wang, D., Wright, M., Elumalai, N.K., and Uddin, A.: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255 (2016).Google Scholar
Leijtens, T., Bush, K., Cheacharoen, R., Beal, R., Bowring, A., McGehee, M.D., Tress, W., Schenk, K., Teuscher, J., Moser, J-E., Rensmo, H., Hagfeldt, A., Alam, M.A., Gupta, G., Lou, J., Ajayan, P.M., Bedzyk, M.J., Kanatzidis, M.G., and Mohite, A.D.: Towards enabling stable lead halide perovskite solar cells; Interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483 (2017).Google Scholar
Hashmi, S.G., Tiihonen, A., Martineau, D., Ozkan, M., Vivo, P., Kaunisto, K., Ulla, V., Zakeeruddin, S.M., and Grätzel, M.: Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking. J. Mater. Chem. A 5, 4797 (2017).Google Scholar
Feng, L., Tang, W., Zhao, J., Yang, R., Hu, W., Li, Q., Wang, R., and Guo, X.: Unencapsulated air-stable organic field effect transistor by all solution processes for low power vapor sensing. Sci. Rep. 6, 20671 (2016).Google Scholar
Zhao, Y., Yan, L., Murtaza, I., Liang, X., Meng, H., and Huang, W.: A thermally stable anthracene derivative for application in organic thin film transistors. Org. Electron. 43, 105 (2017).Google Scholar
Gevorgyan, S.A., Madsen, M.V., Roth, B., Corazza, M., Hösel, M., Søndergaard, R.R., Jørgensen, M., and Krebs, F.C.: Lifetime of organic photovoltaics: Status and predictions. Adv. Energy Mater. 6, 1 (2016).Google Scholar
Yu, D., Yang, Y.Q., Chen, Z., Tao, Y., and Liu, Y.F.: Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 362, 43 (2016).Google Scholar
Samsung: www.samsung.com (viewed on 03/09/2018).Google Scholar
Lee, J.: Samsung may release phones with bendable screens in 2017. Available at: https://www.bloomberg.com/news/articles/2016-06-07/samsung-said-to-consider-phones-with-bendable-screens-for-2017-ip4tgwz9 (published on 06/06/2016, accessed on 03/19/2018).Google Scholar
Moro, L. and Visser, R.J.: Barrier films for photovoltaics applications. In Organic Photovoltaics, Brabec, C., Dyakonov, V., and Scherf, U., eds. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008); pp. 491510.Google Scholar
Adachi, C., Hattori, R., Kaji, H., and Tsujimura, T., eds.: Handbook Light-Emitting Diodes (Springer, Berlin, Heidelbergn, forthcoming), https://doi.org/10.1007/978-4-431-55761-6.Google Scholar
Apple: www.apple.com (viewed on 03/09/2018).Google Scholar
Kondakov, D.Y.: In OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes, Gaspar, D.J. and Polikarpov, E., eds. (CRC Press, Boca Raton, Florida, 2015); pp. 339364.Google Scholar
Moro, L.L., Krajewski, T.A., Rutherford, N.M., Philips, O., Visser, R.J., Gross, M.E., Bennett, W.D., and Graff, G.L.: Process and design of a multilayer thin film encapsulation of passive matrix OLED displays. In Proceedings of SPIE—The International Society for Optical Engineering 5214 (Organic Light-Emitting Materials and Devices VII), In Kafafi, Z.H. and Lane, P.A., eds. (SPIE, San Diego, California, 2004); p. 83.Google Scholar
Burrows, P.E., Graff, G.L., Gross, M.E., Martin, P.M., Hall, M., Mast, E., Bonham, C.C., Bennett, W.D., Michalski, L.A., Weaver, M.S., Brown, J.J., Fogarty, D., and Sapochak, L.S.: In Kafafi, Z.H., ed. (2001); p. 75.Google Scholar
Madigan, C., Van Slyke, S., and Vronsky, E.: Inkjet printing equipment for organic LED mass production. SPIE Newsroom, 1 (2015).Google Scholar
Graff, G.L., Williford, R.E., and Burrows, P.E.: Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation. J. Appl. Phys. 96, 1840 (2004).Google Scholar
Vogt, B.D., Lee, H-J., Prabhu, V.M., DeLongchamp, D.M., Lin, E.K., Wu, W., and Satija, S.K.: X-ray and neutron reflectivity measurements of moisture transport through model multilayered barrier films for flexible displays. J. Appl. Phys. 97, 114509 (2005).Google Scholar
Chu, X., Moro, L., and Visser, R.J.: Anal fail modes multilayer thin film encapsulation OLED devices Ca film. Presented at the IDW '04, The 11th International Display Workshop Nilgata, Japan, 2004.Google Scholar
Moro, L., Chu, X., and Hirayama, H.: A mass manufacturing process for Barix encapsulation of OLED displays: A reduced number of dyads, higher throughput and 1.5 mm edge seal. In IMID/IDMC '06 Digest (Daegu, South Korea, 2006); pp. 754758.Google Scholar
Lin, S., Chu, X., and Rosenblum, P.M.: Ultra-barrier coatings enabled by inkjet print. In Spring 2010 Meeting of the American Chemical Society—Division of Polymeric Materials: Science and Engineering (San Francisco, California, 2010).Google Scholar
Jin, D-U., Lee, J-S., Kim, T-W., An, S-G., Straykhilev, D., Pyo, Y-S., Kim, H-S., Lee, D-B., Mo, Y-G., Kim, H-D., and Chung, H-K.: 65.2: Distinguished paper: World-largest (6.5″) flexible full color top emission AMOLED display on plastic film and its bending properties. SID Int. Symp. Dig. Tech. Pap. 40, 983 (2009).Google Scholar
Hebb, J.: Printed Electronics USA (Santa Clara, California, 2017).Google Scholar
Madigan, C.F., Hauf, C.R., Barkley, L.D., Harjee, N., Vronsky, E., and Van Slyke, S.A.: 30.2: Invited paper: Advancements in inkjet printing for OLED mass production. SID Int. Symp. Dig. Tech. Pap. 45, 399 (2014).Google Scholar
Tsujimura, T.: OLED Displays (John Wiley & Sons, Inc., Hoboken, New Jersey, 2012); pp. 205223.Google Scholar
Ghosh, A., Donoghue, E.P., Khayrullin, I., Ali, T., Wacyk, I., Tice, K., Vazan, F., Sziklas, L., Fellowes, D., and Draper, R.: 62-1: Invited paper: Directly patterened 2645 PPI full color OLED microdisplay for head mounted wearables. SID Int. Symp. Dig. Tech. Pap. 47, 837 (2016).Google Scholar
Levy, S.: Google glass 2.0 is a startling second act. Available at: https://www.wired.com/story/google-glass-2-is-here (published on 07/18/2017, accessed on 03/19/2018).Google Scholar
Mobile World Congress, 2017.Google Scholar
Wittmann, S.: Printed Electronics USA (Santa Clara, California, 2017).Google Scholar
Hong, J-H., Shin, J.M., Kim, G.M., Joo, H., Park, G.S., Hwang, I.B., Kim, M.W., Park, W-S., Chu, H.Y., and Kim, S.: 9.1-inch stretchable AMOLED display based on LTPS technology. J. Soc. Inf. Disp. 25, 194 (2017).Google Scholar
Mathas, C.: Will the auto industry adopt OLED lighting? Available at: https://www.edn.com/electronics-blogs/led-zone/4458025/Will-the-auto-industry-adopt-OLED-lighting (published on 02/24/2017, accessed on 03/19/2018).Google Scholar
Nguyen, T.C.: What you need to know about OLED lighting. Available at: https://www.washingtonpost.com/news/innovations/wp/2015/01/05/what-you-need-to-know-about-oled-lighting/?utm_term=.b64364d7c26a (published on 01/05/2015, accessed on 03/19/2018).Google Scholar
Osram: www.osram.com (viewed on 03/09/2018).Google Scholar
National renewable energy laboratory, 2017.Google Scholar
Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., Tress, W., and Hagfeldt, A.: Promises and challenges of perovskite solar cells. Science 744, 739 (2017).Google Scholar
Roesch, R., Faber, T., Von Hauff, E., Brown, T.M., Lira-Cantu, M., and Hoppe, H.: Procedures and practices for evaluating thin-film solar cell stability. Adv. Energy Mater. 5, 1 (2015).Google Scholar
Steinmann, V., Brandt, R.E., and Buonassisi, T.: Photovoltaics: Non-cubic solar cell materials. Nat. Photonics 9, 355 (2015).Google Scholar
Brandt, R.E., Stevanović, V., Ginley, D.S., and Buonassisi, T.: Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 5, 265 (2015).Google Scholar
Koushik, D., Verhees, W.J.H., Kuang, Y., Veenstra, S., Zhang, D., Verheijen, M.A., Creatore, M., and Schropp, R.E.I.: High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10, 91 (2017).Google Scholar
Cheng, P. and Zhan, X.: Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 45, 2544 (2016).Google Scholar
Grossiord, N., Kroon, J.M., Andriessen, R., and Blom, P.W.M.: Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432 (2016).Google Scholar
Krebs, F.C., Carlé, J.E., Cruys-Bagger, N., Andersen, M., Lilliedal, M.R., Hammond, M.A., and Hvidt, S.: Lifetimes of organic photovoltaics: Photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminum devices. Sol. Energy Mater. Sol. Cells 86, 499 (2005).Google Scholar
Norrman, K., Larsen, N.B., and Krebs, F.C.: Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms. Sol. Energy Mater. Sol. Cells 90, 2793 (2006).Google Scholar
Neugebauer, H., Brabec, C., Hummelen, J.C., and Sariciftci, N.S.: Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Sol. Energy Mater. Sol. Cells 61, 35 (2000).Google Scholar
Hauch, J.A., Schilinsky, P., Choulis, S.A., Rajoelson, S., and Brabec, C.J.: The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl. Phys. Lett. 93, 103306 (2008).Google Scholar
Jordan, D.C. and Kurtz, S.R.: Photovoltaic degradation rates-an analytical review. Prog. Photovoltaics Res. Appl. 21, 12 (2013).Google Scholar
Powell, D.M., Fu, R., Horowitz, K., Basore, P.A., Woodhouse, M., and Buonassisi, T.: The capital intensity of photovoltaics manufacturing: Barrier to scale and opportunity for innovation. Energy Environ. Sci. 8, 3395 (2015).Google Scholar
Powell, D.M., Winkler, M.T., Choi, H.J., Simmons, C.B., Needleman, D.B., and Buonassisi, T.: Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874 (2012).Google Scholar
Powell, D.M., Winkler, M.T., Goodrich, A., and Buonassisi, T.: Modeling the cost and minimum sustainable price of crystalline silicon photovoltaic manufacturing in the United States. IEEE J. Photovolt. 3, 662 (2013).Google Scholar
Mulligan, C.J., Wilson, M., Bryant, G., Vaughan, B., Zhou, X., Belcher, W.J., and Dastoor, P.C.: A projection of commercial-scale organic photovoltaic module costs. Sol. Energy Mater. Sol. Cells 120, 9 (2014).Google Scholar
Deibel, C. and Dyakonov, V.: Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 96401 (2010).Google Scholar
Beckman, B.L.: All-girl engineer team invents solar-powered tent for the homeless. Available at: https://mashable.com/2017/06/15/diy-girls-solar-powered-tent-homeless/#h0IA4T9PSSql (published on 06/15/2017).Google Scholar
Belluck, P.: First digital pill approved to worries about biomedical ‘big brother’. Available at: https://www.nytimes.com/2017/11/13/health/digital-pill-fda.html, New York Times (published on 11/13/2017, accessed on 03/19/2018).Google Scholar
Someya, T., Bao, Z., and Malliaras, G.G.: The rise of plastic bioelectronics. Nature 540, 379 (2016).Google Scholar
Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., and Someya, T.: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458 (2013).Google Scholar
Karim, F. and Zeadally, S.: Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sust. Energ. Rev. 55, 1041 (2016).Google Scholar
Xu, J., Zhang, J., Zheng, X., Wei, X., and Han, J.: Wireless sensors in farmland environmental monitoring. In 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (IEEE, Xi'an, China, 2015); pp. 372379.Google Scholar
Srbinovska, M., Gavrovski, C., Dimcev, V., and Krkoleva, A.: Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 88, 297 (2015).Google Scholar
Ruiz-garcia, L., Lunadei, L., Barreiro, P., and Robla, J.I.: A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 9, 4728 (2009).Google Scholar
Khanal, S., Fulton, J., and Shearer, S.: An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 139, 22 (2017).Google Scholar
Zang, Y., Huang, D., Di, C., and Zhu, D.: Device engineered organic transistors for flexible sensing applications. Adv. Mater. 28, 4549 (2016).Google Scholar
Vuuren, R.D.J., Armin, A., Pandey, A.K., Burn, P.L., and Meredith, P.: Organic photodiodes: The future of full color detection and image sensing. Adv. Mater. 28, 4766 (2016).Google Scholar
de Goede, J., Bouten, P., Médico, L., Leterrier, Y., Månson, J-A., and Nisato, G.: Failure of brittle functional layers in flexible electronic devices. MRS Online Proc. Libr. 854, U9.2 (2004).Google Scholar
Nisato, G., Kuilder, M., Bouten, P., Moro, L., Philips, O., and Rutherford, N.: P-88: Thin film encapsulation for OLEDs: Evaluation of multi-layer barriers using the Ca test. SID Int. Symp. Dig. Tech. Pap. 34, 550 (2003).Google Scholar
Kim, H., Singh, A.K., Wang, C-Y., Fuentes-Hernandez, C., Kippelen, B., and Graham, S.: Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films. Rev. Sci. Instrum. 87, 33902 (2016).Google Scholar
Bulusu, A., Graham, S., Bahre, H., Behm, H., Böke, M., Dahlmann, R., Hopmann, C., and Winter, J.: The mechanical behavior of ALD-polymer hybrid films under tensile strain. Adv. Eng. Mater. 17, 1057 (2015).Google Scholar
McKenna, G.B., Leterrier, Y., and Schultheisz, C.R.: The evolution of material properties during physical aging. Polym. Eng. Sci. 35, 403 (1995).Google Scholar
Novoa, F.D., Miller, D.C., and Dauskardt, R.H.: Adhesion and debonding kinetics of photovoltaic encapsulation in moist environments. Prog. Photovoltaics Res. Appl. 24, 183 (2016).Google Scholar
Shivakumar, R., Tippabhotla, S.K., Handara, V.A., Illya, G., Tay, A.A.O., Novoa, F., Dauskardt, R.H., and Budiman, A.S.: Fracture mechanics and testing of interface adhesion strength in multilayered structures—Application in advanced solar PV materials and technology. Procedia Eng. 139, 47 (2016).Google Scholar
Cai, C., Miller, D.C., Tappan, I.A., and Dauskardt, R.H.: Degradation of thermally-cured silicone encapsulant under terrestrial UV. Sol. Energy Mater. Sol. Cells 157, 346 (2016).Google Scholar
Yuasa System Co. Ltd: www.yuasa-system.jp (viewed on 03/09/2018).Google Scholar