Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T22:29:39.807Z Has data issue: false hasContentIssue false

Electronic paramagnetic resonance study of Cu2+ ions in copper ion-exchanged layers of lithium niobate crystals

Published online by Cambridge University Press:  31 January 2011

F. Caccavale*
Affiliation:
INFM-UdR Padova and Department of Materials Science, University of Milano Bicocca, via Cozzi 53, 20125 Milano, Italy
C. Sada
Affiliation:
Physics Department, INFM-University of Padova, via Marzolo 8, 35131 Padova, Italy
F. Segato
Affiliation:
Physics Department, INFM-University of Padova, via Marzolo 8, 35131 Padova, Italy
L. D. Bogomolova
Affiliation:
Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia
V. A. Jachkin
Affiliation:
Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia
N. A. Krasil'nikova
Affiliation:
Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

Copper-doped LiNbO3 layers prepared by an Cu–Li ion-exchange process are characterized by electronic paramagnetic resonance. It is found that the majority of Cu2+ ions are coupled by strong exchange interactions which is characteristic of short distances between paramagnetic ions. Such ions are accumulated in a thin layer near the crystal surface and can enter in new crystalline phases formed as a result of the Cu–Li ion exchange. A small amount of Cu2+ ions is incorporated into weakly distorted LiNbO3 crystal lattice inside the diffusion layer.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bobrov, Yu.A., Gan'shin, V.A., Ivanov, V.Sh., Korkishko, Yu.N., and Morozova, T.V., Phys. Status Solidi 123, 317 (1991).CrossRefGoogle Scholar
2.Gan'shin, V.A., Ivanov, V.Sh., Korkishko, Yu.N., and Petrova, V.Z., Sov. Phys. Tech. Phys. 31, 794 (1986).Google Scholar
3.Sada, C., Borsella, E., Caccavale, F., Gonella, F., Segato, F., Korkishko, Yu.N., Fedorov, V.A., Morozova, T.V., Battaglin, G., and Polloni, R., Appl. Phys. Lett. 72, 3431 (1998).CrossRefGoogle Scholar
4.Caccavale, F., Sada, C., Segato, F., Korkishko, Yu.N., Fedorov, V.A., and Morozova, T.V., J. Non-Cryst. Solids 245, 135 (1999).CrossRefGoogle Scholar
5.Caccavale, F., Sada, C., Segato, F., Bogomolova, L.D., Krasil'nikova, N.A., Korkishko, Yu.N., Fedorov, V.A., and Morozova, T.V., J. Mater. Res. (unpublished).Google Scholar
6.Kostritskii, S.M. and Kolesnikov, O.M., J. Opt. Soc. Am. B 11, 17 (1994).CrossRefGoogle Scholar
7.Setser, G.G., Ang, D., Lewis, J.T., and Estle, T.L., Bull. Am. Phys. Soc. 18, 357 (1973).Google Scholar
8.Dischler, B. and Rauber, A., Solid State Commun. 17, 953 (1975).CrossRefGoogle Scholar
9.Kobayashi, T., Meto, K., Kai, J., and Kawamori, A., J. Magn. Reson. 34, 459 (1979).Google Scholar
10.Petrosyan, A.K., Khacharyan, R.M., and Sharoyan, E.G., Phys. Status Solidi B 122, 725 (1984).CrossRefGoogle Scholar
11.Park, I-W., Kim, D.K., Choh, S.H., and Kim, S.S., J. Korean Phys. Soc. (Proc. Suppl.) 29, S699 (1996).Google Scholar
12.Gonella, F., Caccavale, F., Bogomolova, L.D., and Jachkin, V.A., Appl. Phys. A 68, 539 (1999).CrossRefGoogle Scholar
13.Bogomolova, L.D., Fedorov, A.G., and Kubrinskaya, M.E., J. Non-Cryst. Solids 54, 153 (1983).CrossRefGoogle Scholar
14.Bogomolova, L.D., Jackhin, V.A., Prushinsky, S.A., Stefanovsky, S.V., Teplyakov, Yu.G., and Caccavale, F., J. Non-Cryst. Solids 220, 109 (1997).CrossRefGoogle Scholar
15.Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, U.K., 1970).Google Scholar
16.Anderson, P.W. and Weiss, P.R., Rev. Mod. Phys. 25, 269 (1953).CrossRefGoogle Scholar
17.Bleaney, B., Bowers, K.D., and Pryce, M.H.L., Proc. R. Soc. A 228, 166 (1955).Google Scholar
18.Hagen, S.H. and Trappeniers, M.Y., Physica 66, 166 (1973).CrossRefGoogle Scholar
19.Sroubek, Z. and Zdansky, K., J. Chem. Phys. 44, 3078 (1966).CrossRefGoogle Scholar
20.Weiss, R.S. and Gaylord, T.K., Appl. Phys. A 37, 191 (1985).CrossRefGoogle Scholar