Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T22:20:25.675Z Has data issue: false hasContentIssue false

Effects of oxygen pressure on the structure of Y–Ba–Cu–O materials formed by containerless melting and solidification

Published online by Cambridge University Press:  03 March 2011

J.K.R. Weber
Affiliation:
Containerless Research, Incorporated, Evanston, Illinois 60201-3149
P.C. Nordine
Affiliation:
Containerless Research, Incorporated, Evanston, Illinois 60201-3149
K.C. Goretta
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439-4838
R.B. Poeppel
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439-4838
Get access

Abstract

YBa2Cu3Ox ceramic superconductors were levitated, laser-beam melted, and undercooled in pure oxygen, dry air, and pure argon atmospheres. Solidified material from this containerless melting was examined by electron microscopy and x-ray diffraction analysis. The solubility of yttrium oxide in the melt was found to depend on ambient oxygen pressure such that complete dissolution was readily achieved in argon, but not in oxygen. The material formed in argon could be deeply undercooled and resolidified to produce a fine-grained and chemically homogeneous material. Use of ambient oxygen pressure to control the product morphology is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kuhamangrong, S. and Taylor, J., J. Am. Ceram. Soc. 74, 19641969 (1991).Google Scholar
2Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl.Phys. 28, 11891194 (1989).CrossRefGoogle Scholar
3Kammlott, G. W., Tiefel, T. H., and Jin, S., Appl. Phys. Lett. 56, 24592461 (1990).Google Scholar
4Dube, D., Arsenault, B., Gelinas, C., Lambert, P., Champagne, B., and Cave, J. R., Supercond. Sci. Technol. 5, 489496 (1992).CrossRefGoogle Scholar
5Olive, J. R., Hofmeister, W. H., Bayuzick, R. J., Carro, G., McHugh, J.P., Hopkins, R. H., Vlasse, M., Weber, J. K. R., Nordine, P. C., and McElfresh, M., J. Mater. Res. 9, 13 (1994).Google Scholar
6Todt, V.R. and Schmitz, G.J., J. Mater. Res. 8, 411414 (1993).CrossRefGoogle Scholar
7Weber, J. K. R., Anderson, C. D., Merkley, D. R., and Nordine, P. C., J. Am. Ceram. Soc. (1994, in press).Google Scholar
8Coutures, J. P., Massiot, D., Bessada, C., Echegut, P., Rifflet, J. C., and Taulelle, F., C. R. Acad. Sci. Paris 310 II, 10411045 (1990).Google Scholar
9Nelson, L. S., Richardson, N. L., Keil, K., and Skaggs, S. R., HighTemp. Sci. 5, 138154 (1973).Google Scholar
10Borowiec, K. and Kolbrecka, K., Jpn. J. Appl. Phys. 28, L19631966 (1989).Google Scholar
11Weber, J. K. R., Zima, W. P., Nordine, P. C., Goretta, K. C., and Poeppel, R. B., in Containerless Processing Techniques and Applications, edited by Hofmeister, W. H. and Schiffman, R. S. (The Minerals, Metals and Materials Society, Warrendale, PA, Oct., 1993), pp. 123128.Google Scholar
12Dorris, S. E., Lanagan, M. T., Moffat, D. M., Leu, H. J., Youngdahl, C. A., Balachandran, U., Cazzato, A., Bloomberg, D. E., and Goretta, K. C., Jpn. J. Appl. Phys. 28, L14151416 (1989).CrossRefGoogle Scholar
13Weber, J. K. R., Hampton, D. S., Merkley, D. R., Rey, C. A., Zatarski, M. M., and Nordine, P. C., Rev. Sci. Instrum. 65, 456465 (1994).CrossRefGoogle Scholar
14Lee, D. F., Selvamanickam, V., and Salama, K., Physica C 202, 83 (1992).Google Scholar
15Shi, D., J. Electron. Mater. 22, 1211 (1993).CrossRefGoogle Scholar
16Mironova, M., Lee, D. F., and Salama, K., Physica C 211, 188 (1993).Google Scholar
17Sengupta, S., Shi, D., Wang, Z., Biondo, A. C., Balachandran, U., and Goretta, K. C., Physica C 199, 43 (1992).CrossRefGoogle Scholar