Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T22:42:16.212Z Has data issue: false hasContentIssue false

Effects of Cu and Ni additions to eutectic Pb–Sn solders on Au embrittlement of solder interconnections

Published online by Cambridge University Press:  31 January 2011

Jong-Hyun Lee
Affiliation:
Department of Materials Science and Engineering, Hong Ik University, 72-1, Sangsu-Dong, Mapo-Gu, Seoul 121-791, Korea
Jong-Hwan Park
Affiliation:
Department of Materials Science and Engineering, Hong Ik University, 72-1, Sangsu-Dong, Mapo-Gu, Seoul 121-791, Korea
Yong-Ho Lee
Affiliation:
Department of Materials Science and Engineering, Hong Ik University, 72-1, Sangsu-Dong, Mapo-Gu, Seoul 121-791, Korea
Yong-Seog Kim
Affiliation:
Department of Materials Science and Engineering, Hong Ik University, 72-1, Sangsu-Dong, Mapo-Gu, Seoul 121-791, Korea
Get access

Abstract

Effects Cu and Ni additions on Au embrittlement of eutectic Sn–Pb solder interconnections during a solid-state aging treatment were evaluated using a ball shear testing method. The addition resulted in a formation of Au-containing ternary intermetallic compounds, either Au–Sn–Cu or Au–Sn–Ni phase, inside the solder matrix during aging treatment. The fracture energy of the solder interconnection containing 2.9 wt% Cu remained almost the same up to 200 h of aging treatment at 150 °C, demonstrating the possibility of suppressing the Au embrittlement by forming ternary intermetallic phases inside the solder matrix.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mei, Z., Kaufmaan, M., Eslambolchi, A., and Johnson, P., in Brittle Interfacial Fracture of PBGA Packages Soldered on Electroless Nickel/Immersion Gold (48th IEEE ECTC Proc., Piscataway, NJ, 1998), p. 952.Google Scholar
2.Hung, S.C., Zheng, P.J., Lee, S.C., Lee, J.J., in The Effect of Au Plating Thickness of BGA Substrates on Ball Shear Strength under Reliability Tests (IEEE/CPMT Int. Electron. Manufact. Technol. Symp. Proc., Piscataway, NJ, 1999), p. 7.Google Scholar
3.Erich, R., Coyle, R.J., Wenger, G.M., and Primavera, A., in Shear Testing and Failure Mode Analysis for Evaluation of BGA Ball Attachment (IEEE/CPMT Int. Electron. Manufact. Technol. Symp. Proc., Piscataway, NJ, 1999), p. 16.Google Scholar
4.Zribi, A., Chromik, R.R., Presthus, R., Clum, J., Teed, K., Zavalij, L., DeVita, J., Tova, J., and Cotts, E.J., in Solder Metalization Interdiffusion in Microelectronic Interconnects (48th IEEE ECTC Proc., Piscataway, NJ, 1999), p. 451.Google Scholar
5.Minor, A.M. and Morris, J.W. Jr., Metall. Mater. Trans. A 31A, 798 (2000).CrossRefGoogle Scholar
6.Zribi, A., Chromik, R.R., Presthus, R., Teed, K., Zavalij, L., DeVita, J., Tova, J., Cotts, E.J., Clum, J.A., Erich, R., Primavera, A., Westby, G., Coyle, R.J. and Wenger, G.M., IEEE Trans. Comp. Packaging Technol. 23, 383 (2000).CrossRefGoogle Scholar
7.Minor, A.M. and Morris, J.W. Jr., J. Electron. Mater. 29, 1170 (2000).CrossRefGoogle Scholar
8.Lee, J.H., Park, D.J., Heo, J.N., Lee, Y.H., Shin, D.H., and Kim, Y.S., Scipta Mater. 42, 827 (2000).CrossRefGoogle Scholar
9.Lee, J.H., Park, D.J., Lee, Y.H., Shin, D.H., and Kim, Y.S., J. Kor. Inst. Met. Mater. 29, 1233 (2000).Google Scholar
10.Ho, C.E., Zheng, R., Luo, G.L., Lin, A.H., and Kao, C.R., J. Electron. Mater. 29, 1175 (2000).CrossRefGoogle Scholar