Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T21:21:42.706Z Has data issue: false hasContentIssue false

Effect of zinc and rare-earth element addition on mechanical, corrosion, and biological properties of magnesium

Published online by Cambridge University Press:  18 September 2018

Rakesh Rajan Kottuparambil
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
Srikanth Bontha*
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
Ramesh Motagondanahalli Rangarasaiah
Affiliation:
Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
Shashi Bhushan Arya
Affiliation:
Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
Anuradha Jana
Affiliation:
Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, West Bengal 700 032, India
Mitun Das
Affiliation:
Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, West Bengal 700 032, India
Vamsi Krishna Balla
Affiliation:
Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, West Bengal 700 032, India
Srinivasan Amrithalingam
Affiliation:
Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
T. Ram Prabhu
Affiliation:
CEMILAC, Defence Research and Development Organization, Bangalore 560093, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The present work aims to understand the effect of zinc and rare-earth element addition (i.e., 2 wt% Gd, 2 wt% Dy, and 2 wt% of Gd and Nd individually) on the microstructure evolution, mechanical properties, in vitro corrosion behavior, and cytotoxicity of Mg for biomedical application. The microstructure results indicate that the Mg–Zn–Gd alloy consists of the lamellar long period stacking ordered phase. The electrochemical and immersion corrosion behavior were studied in Hanks balanced salt solution. Enhanced corrosion resistance with reduced hydrogen evolution volume and magnesium (Mg2+) ion release were estimated for the Mg–Zn–Gd alloy as compared to the other two alloy systems. At the early stage of corrosion, formation of the oxide film inhibited the corrosion propagation. However, at the later stages, the breaking of the oxide film leads to shallow pitting mode of corrosion. The ultimate tensile strength of Mg–Zn–Gd–Nd is better than the other two alloys due to the uniform distribution of the Mg12Nd precipitate phase. The moderate strength in the Mg–Zn–Gd alloy is due to the low volume fraction of the secondary phase. The MTT (methylthiazoldiphenyl-tetrazolium bromide) assay study was carried out to understand the cell cytotoxicity on the alloy surfaces. Studies revealed that all three alloys had significant cellular adherence and no adverse effect on cells.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Robinson, D.A., Griffith, R.W., Shechtman, D., Evans, R.B., and Conzemius, M.G.: In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Acta Biomater. 6, 1869 (2010).CrossRefGoogle ScholarPubMed
Zhang, L.N., Hou, Z.T., Ye, X., Bin Xu, Z., Bai, X.L., and Shang, P.: The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: A literature review. Front. Mater. Sci. 7, 227 (2013).CrossRefGoogle Scholar
Seal, C.K., Vince, K., and Hodgson, M.A.: Biodegradable surgical implants based on magnesium alloys—A review of current research. IOP Conf. Ser.: Mater. Sci. Eng. 4, 012011 (2009).CrossRefGoogle Scholar
Wu, G., Ibrahim, J.M., and Chu, P.K.: Surface & coatings technology surface design of biodegradable magnesium alloys—A review. Surf. Coat. Technol. 233, 2 (2013).CrossRefGoogle Scholar
Staiger, M.P., Pietak, A.M., Huadmai, J., and Dias, G.: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728 (2006).CrossRefGoogle ScholarPubMed
Li, Z., Gu, X., Lou, S., and Zheng, Y.: The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329 (2008).CrossRefGoogle ScholarPubMed
Zhang, B.P., Wang, Y., and Geng, L.: Research on Mg–Zn–Ca alloy as degradable biomaterial. In Biomaterials-Physics and Chemistry, Pignatello, R., ed. (2011); Ch. 9, ISBN 978-953-307-418-4.CrossRefGoogle Scholar
Gao, L., Chen, R.S., and Han, E.H.: Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 481, 379 (2009).CrossRefGoogle Scholar
Mushahary, D., Sravanthi, R., Li, Y., Kumar, M.J., Harishankar, N., Hodgson, P.D., Wen, C., and Pande, G.: Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration. Int. J. Nanomed. 8, 2887 (2013).Google ScholarPubMed
Peng, Q., Huang, Y., Zhou, L., Hort, N., and Kainer, K.U.: Preparation and properties of high purity Mg–Y biomaterials. Biomaterials 31, 398 (2010).CrossRefGoogle ScholarPubMed
Wan, Y., Xiong, G., Luo, H., He, F., Huang, Y., and Zhou, X.: Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater. Des. 29, 2034 (2008).CrossRefGoogle Scholar
Yang, Z., Li, J.P., Zhang, J.X., Lorimer, G.W., and Robson, J.: Review on research and development of magnesium alloys. Acta Mettall. Sin. 21, 313 (2008).CrossRefGoogle Scholar
Li, Y., Wen, C., Mushahary, D., Sravanthi, R., Harishankar, N., Pande, G., and Hodgson, P.: Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomater. 8, 3177 (2012).CrossRefGoogle ScholarPubMed
Zhang, E., Yang, L., Xu, J., and Chen, H.: Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application. Acta Biomater. 6, 1756 (2010).CrossRefGoogle ScholarPubMed
Hu, X.S., Wu, K., Zheng, M.Y., Gan, W.M., and Wang, X.J.: Low frequency damping capacities and mechanical properties of Mg–Si alloys. Mater. Sci. Eng., A 452–453, 374 (2007).CrossRefGoogle Scholar
Xu, R., Yang, X., Suen, K.W., Wu, G., Li, P., and Chu, P.K.: Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation. Appl. Surf. Sci. 263, 608 (2012).CrossRefGoogle Scholar
Song, G. and Atrens, A.: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11 (1999).3.0.CO;2-N>CrossRefGoogle Scholar
Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Tao, H., Zhang, Y., He, Y., Jiang, Y., and Bian, Y.: Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 6, 626 (2010).CrossRefGoogle ScholarPubMed
Kannan, M.B. and Raman, R.K.S.: In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 29, 2306 (2008).CrossRefGoogle ScholarPubMed
Ganrot, P.O.: Metabolism and possible health effects of aluminum. Environ. Health Perspect. 65, 363 (1986).Google ScholarPubMed
Dai, Y., Li, J., Li, J., Yu, L., Dai, G., Hu, A., Yuan, L., and Wen, Z.: Effects of rare earth compounds on growth and apoptosis of leukemic cell lines. In Vitro Cell. Dev. Biol.: Anim. 38, 373 (2002).2.0.CO;2>CrossRefGoogle ScholarPubMed
Chen, Y., Xu, Z., Smith, C., and Sankar, J.: Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10, 4561 (2014).CrossRefGoogle ScholarPubMed
Leng, Z., Zhang, J., Zhang, M., Liu, X., Zhan, H., and Wu, R.: Microstructure and high mechanical properties of Mg–9RY–4Zn (RY: Y-rich misch metal) alloy with long period stacking ordered phase. Mater. Sci. Eng., A 540, 38 (2012).CrossRefGoogle Scholar
Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., and Windhagen, H.: In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26, 3557 (2005).CrossRefGoogle ScholarPubMed
Feyerabend, F., Fischer, J., Holtz, J., Witte, F., Willumeit, R., Drücker, H., Vogt, C., and Hort, N.: Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 6, 1834 (2010).CrossRefGoogle ScholarPubMed
Mao, L., Yuan, G., Wang, S., Niu, J., Wu, G., and Ding, W.: A novel biodegradable Mg–Nd–Zn–Zr alloy with uniform corrosion behavior in artificial plasma. Mater. Lett. 88, 1 (2012).CrossRefGoogle Scholar
Witte, F. and Eliezer, A.: Biodegradable metals. Degrad. Implant Mater. 77, 93 (2012).CrossRefGoogle Scholar
Baboian, R. and Dean, S.W.: Corrosion Testing and Evaluation: Silver Anniversary Volume (ASTM, Pennsylvania, 1990).CrossRefGoogle Scholar
Yang, J., Wang, L., Wang, L., and Zhang, H.: Microstructures and mechanical properties of the Mg–4.5Zn–xGd (x = 0, 2, 3, and 5) alloys. J. Alloys Compd. 459, 274 (2008).CrossRefGoogle Scholar
Bi, G., Li, Y., Zang, S., Zhang, J., Ma, Y., and Hao, Y.: Microstructure, mechanical and corrosion properties of Mg–2Dy–xZn (x = 0, 0.1, 0.5, and 1 at.%) alloys. J. Magnesium Alloys 2, 64 (2014).CrossRefGoogle Scholar
Atrens, A., Song, G-L., Liu, M., Shi, Z., Cao, F., and Dargusch, M.S.: Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 17, 400 (2015).CrossRefGoogle Scholar
Shi, Z., Liu, M., and Atrens, A.: Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52, 579 (2010).CrossRefGoogle Scholar
Song, G., Atrens, A., and StJohn, D.: An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In Magnesium Technology 2001, Hryn, J.N., ed. (The Minerals, Metals and Materials Society (TMS), Pennsylvania 2013); p. 254.CrossRefGoogle Scholar
Zainal Abidin, N.I., Rolfe, B., Owen, H., Malisano, J., Martin, D., Hofstetter, J., Uggowitzer, P.J., and Atrens, A.: The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros. Sci. 75, 354 (2013).CrossRefGoogle Scholar
Atrens, A., Liu, M., and Zainal Abidin, N.I.: Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng., B 176, 1609 (2011).CrossRefGoogle Scholar
Atrens, A., Song, G., Cao, F., Shi, Z., and Bowen, P.K.: ScienceDirect advances in Mg corrosion and research suggestions. J. Magnesium Alloys 1, 177 (2013).CrossRefGoogle Scholar
Cor, E.: Standard practice for laboratory immersion corrosion testing of metals 1. Corrosion 72, 1 (2004). (Reapproved).Google Scholar
Das, M., Bhattacharya, K., Dittrick, S.A., Mandal, C., Krishna, V., Kumar, T.S.S., and Bandyopadhyay, A.: In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in vitro biocompatibility. J. Mech. Behav. Biomed. Mater. 29, 259 (2014).CrossRefGoogle ScholarPubMed
Srinivasan, A., Huang, Y., Mendis, C.L., Blawert, C., Kainer, K.U., and Hort, N.: Investigations on microstructures, mechanical and corrosion properties of Mg–Gd–Zn alloys. Mater. Sci. Eng., A 595, 224 (2014).CrossRefGoogle Scholar
Zhang, J., Zhang, W., Bian, L., Cheng, W., Niu, X., Xu, C., and Wu, S.: Study of Mg–Gd–Zn–Zr alloys with long period stacking ordered structures. Mater. Sci. Eng., A 585, 268 (2013).CrossRefGoogle Scholar
Zheng, L., Liu, C., Wan, Y., Yang, P., and Shu, X.: Microstructures and mechanical properties of Mg–10Gd–6Y–2Zn–0.6Zr (wt%) alloy. J. Alloys Compd. 509, 8832 (2011).CrossRefGoogle Scholar
Morishita, M., Yamamoto, H., Shikada, S., Kusumoto, M., and Matsumoto, Y.: Thermodynamics of the formation of magnesium–zinc intermetallic compounds in the temperature range from absolute zero to high temperature. Acta Mater. 54, 3151 (2006).CrossRefGoogle Scholar
Yamasaki, M., Sasaki, M., Nishijima, M., Hiraga, K., and Kawamura, Y.: Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature. Acta Mater. 55, 6798 (2007).CrossRefGoogle Scholar
Xu, D., Han, E.H., and Xu, Y.: Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review. Prog. Nat. Sci.: Mater. Int. 26, 117 (2016).CrossRefGoogle Scholar
Li, C.Q., Xu, D.K., Zeng, Z.R., Wang, B.J., Sheng, L.Y., Chen, X.B., and Han, E.H.: Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg–Zn–Y alloys. Mater. Des. 121, 430 (2017).CrossRefGoogle Scholar
Zhang, J., Xin, C., Nie, K., Cheng, W., Wang, H., and Xu, C.: Microstructure and mechanical properties of Mg–Zn–Dy–Zr alloy with long-period stacking ordered phases by heat treatments and ECAP process. Mater. Sci. Eng., A 611, 108 (2014).CrossRefGoogle Scholar
Peng, Q., Wang, L.L., and Wu, Y.: Structure stability and strengthening mechanism of die-cast Mg–Gd–Dy based alloy. J. Alloys Compd. 469, 587 (2009).CrossRefGoogle Scholar
Ding, R., Chung, C., Chiu, Y., and Lyon, P.: Effect of ECAP on microstructure and mechanical properties of ZE41 magnesium alloy. Mater. Sci. Eng., A 527, 3777 (2010).CrossRefGoogle Scholar
Gao, X. and Nie, J.F.: Structure and thermal stability of primary intermetallic particles in an Mg–Zn casting alloy. Scr. Mater. 57, 655 (2007).CrossRefGoogle Scholar
Zhang, X., Yuan, G., Niu, J., Fu, P., and Ding, W.: Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg–Nd–Zn–Zr alloy with different extrusion ratios. J. Mech. Behav. Biomed. Mater. 9, 153 (2012).CrossRefGoogle ScholarPubMed
Yang, L. and Zhang, E.: Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater. Sci. Eng., C 29, 1691 (2009).CrossRefGoogle Scholar
Zhao, M.C., Liu, M., Song, G.L., and Atrens, A.: Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corros. Sci. 50, 3168 (2008).CrossRefGoogle Scholar
Song, G. and Atrens, A.: Understanding magnesium corrosion—A framework for improved alloy performance. Adv. Eng. Mater. 5, 837 (2003).CrossRefGoogle Scholar
Zhang, X., Wu, Y., Xue, Y., Wang, Z., and Yang, L.: Biocorrosion behavior and cytotoxicity of a Mg–Gd–Zn–Zr alloy with long period stacking ordered structure. Mater. Lett. 86, 42 (2012).CrossRefGoogle Scholar
Cai, S., Lei, T., Li, N., and Feng, F.: Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater. Sci. Eng., C 32, 2570 (In Tech, Europe, 2012).CrossRefGoogle Scholar
Zander, D. and Zumdick, N.A.: Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys. Corros. Sci. 93, 222 (2015).CrossRefGoogle Scholar
Nge, T.T., Sugiyama, J., and Bulone, V.: Bacterial Cellulose-Based Biomimetic Composites (2010).Google Scholar
Xu, D.K., Liu, L., Xu, Y.B., and Han, E.H.: Effect of microstructure and texture on the mechanical properties of the as-extruded Mg–Zn–Y–Zr alloys. Mater. Sci. Eng., A 443, 248 (2007).CrossRefGoogle Scholar
Shao, X.H., Yang, Z.Q., and Ma, X.L.: Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater. 58, 4760 (2010).CrossRefGoogle Scholar
Lu, F., Ma, A., Jiang, J., Chen, J., Song, D., Yuan, Y., Chen, J., and Yang, D.: Enhanced mechanical properties and rolling formability of fine-grained Mg–Gd–Zn–Zr alloy produced by equal-channel angular pressing. J. Alloys Compd. 643, 28 (2015).CrossRefGoogle Scholar
Zhang, X., Yuan, G., Mao, L., Niu, J., Fu, P., and Ding, W.: Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg–Nd–Zn–Zr alloy. J. Mech. Behav. Biomed. Mater. 7, 77 (2012).CrossRefGoogle ScholarPubMed
Supplementary material: Image

Kottuparambil et al. supplementary material

Figure S1

Download Kottuparambil et al. supplementary material(Image)
Image 4.5 MB