Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T22:15:04.372Z Has data issue: false hasContentIssue false

Effect of α/β phase ratio on microstructure and mechanical properties of silicon nitride ceramics

Published online by Cambridge University Press:  31 January 2011

Hirokazu Kawaoka
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan
Tomohiko Adachi
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan
Tohru Sekino
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan
Yong-Ho Choa
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan
Lian Gao
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan
Koichi Niihara
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan
Get access

Abstract

Highly densed silicon nitride ceramics with various α/β phase ratios were produced by pulse electric current sintering process. The β-phase content of Si3N4 in sintered materials varied from 20 to 100 wt% depending on the sintering condition. The microstructure was observed by scanning electron microscopy and investigated by image analysis. Young's modulus, hardness, fracture toughness, and strength were strongly dependent on the α/β phase ratio. The fracture toughness increased from 4.6 MPa m1/2 for 20-wt% b-phase content to 8.2 MPa m1/2 for 95-wt% β-phase content, and the fracture strength showed a maximum value of about 1.6 GPa at 60-to-80-wt% β-phase content.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tokita, M., J. Soc. Powder Technol. Jpn. 30, 790 (1993).CrossRefGoogle Scholar
2Yanagisawa, T., Hatakeyama, T., and Matsuki, K., Materia Japan 33, 1489 (1994).CrossRefGoogle Scholar
3Murayama, N., Ceramics Japan 65, 445 (1997).Google Scholar
4Omori, M. and Hirai, T., New Ceramics Japan 7, 1 (1994).Google Scholar
5Tamari, N., Tanaka, T., Tanaka, K., Kondoh, I., Kawahara, M., and Tokita, M., J. Ceram. Soc. Jpn. 103, 740 (1995).CrossRefGoogle Scholar
6Choa, Y.H., Kawaoka, H., Sekino, T., and Niihara, K., Key Eng. Mater. 132–136, 2009 (1997).CrossRefGoogle Scholar
7Lange, F.F., J. Am. Ceram. Soc. 62, 428 (1979).CrossRefGoogle Scholar
8Lange, F.F., J. Am. Ceram. Soc. 56, 518 (1973).CrossRefGoogle Scholar
9Faber, K.T. and Evans, A.G., Acta Metall. 31, 565 (1983).CrossRefGoogle Scholar
10Faber, K.T. and Evans, A.G., Acta Metall. 31, 577 (1983).CrossRefGoogle Scholar
11Tani, E., Umebayashi, S., Kishi, K., Kobayashi, Kazuo, and Nishijima, M., Am. Ceram. Soc. Bull. 65, 1311 (1986).Google Scholar
12Becher, P.F., Hwang, S.L., and Hsueh, C.H., Mater. Res. Soc. Bull. Feb., 20, 23 (1995).CrossRefGoogle Scholar
13Becher, P.F., Hsueh, C.H., Angelini, P., and Tiegs, T.N., J. Am. Ceram. Soc. 71, 1050 (1988).CrossRefGoogle Scholar
14Evans, A.G., He, M.Y., and Hutchinson, J.W., J. Am. Ceram. Soc. 72, 2300 (1989).CrossRefGoogle Scholar
15Niihara, and Hirai, T., J. Mater. Sci. Lett. 13, 2276 (1978).Google Scholar
16Chakraborty, D. and Mukerji, J., J. Mater. Sci. 15, 3051 (1980).CrossRefGoogle Scholar
17Greskovich, C. and Gazza, G.E., J. Mater. Sci. Lett. 4, 195 (1985).CrossRefGoogle Scholar
18Nishimura, T., Mitomo, M., Hirotsuru, H., and Kawahara, M., J. Mater. Sci. Lett. 14, 1046 (1995).CrossRefGoogle Scholar
19Pigeon, R.G. and Varma, A., J. Mater. Sci. Lett. 11, 1370 (1992).CrossRefGoogle Scholar
20Mitomo, M., Tshutsumi, M., and Tanaka, H., J. Am. Ceram. Soc. 73, 2441 (1990).CrossRefGoogle Scholar
21Mitomo, M., Uenosono, S., J. Am. Ceram. Soc. 75, 103 (1992).CrossRefGoogle Scholar
22Niihara, K., Morena, R., and Hasselman, D.P.H., J. Mater. Sci. Lett. 1, 13 (1982).CrossRefGoogle Scholar
23Himsolt, G., Knoch, H., Huebner, H., and Kleinlein, F.W., J. Am. Ceram. Soc. 62, 29 (1979).CrossRefGoogle Scholar
24Kossowsky, R., J. Mater. Sci. 8, 1603 (1973).CrossRefGoogle Scholar
25Weston, J.E., J. Mater. Sci. 15, 1568 (1980).CrossRefGoogle Scholar
26Knoch, H. and Ziegler, G., Ber. Dtsch. Keram. Gas 55, 242 (1978).Google Scholar
27Knoch, H. and Gazza, G.E., Ceramurgia International 6, 51 (1980).CrossRefGoogle Scholar
28Wada, S. and Ukyo, Y., The 34th Japan Congress on Materials Research 29 (1991).Google Scholar
29Wiederhorn, S.M. and Bolz, L.H., J. Am. Ceram. Soc. 56, 227 (1973).CrossRefGoogle Scholar
30Ishida, M. and Itagaki, Y., Proc. 4th Amer. Congress of Appl. Mech. 955 (1962).Google Scholar
31Bowie, D.L., J. Appl. Mech. 31, 208 (1964).CrossRefGoogle Scholar
32Gross, B., Strawley, J.E., and Brown, W.F. Jr., Technical Note D-2390, NASA (1964).Google Scholar