Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T14:22:35.972Z Has data issue: false hasContentIssue false

Effect of annealing on microstructure, residual stress, and hardness of Al–Ti multilayered films

Published online by Cambridge University Press:  31 January 2011

R. Mitra
Affiliation:
Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500 058, India
A. Madan
Affiliation:
Advanced Coating Technology Group, Northwestern University, Evanston, Illionois 60208
R. A. Hoffman
Affiliation:
Advanced Coating Technology Group, Northwestern University, Evanston, Illionois 60208
W- A. Chiou
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illionois 60208
J. R. Weertman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illionois 60208

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Al–Ti multilayered films (12 at.% Ti) with bilayer period of 16 nm were deposited by magnetron sputtering. The films were annealed in vacuum at 350 or 400 °C between 2 and 24 h. During annealing, a diffusion-controlled chemical reaction between Al and Ti layers led to Al3Ti precipitation. Differential thermal analysis studies showed an exothermic reaction associated with Al3Ti formation, taking place between 320 and 390 °C, depending on the heating rate. The evolution of microstructure with annealing was examined with transmission electron microscopy and x-ray diffraction. The hardness and residual stress of the films in the as-deposited and annealed conditions were studied in relation to the microstructural changes on annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

References

REFERENCES

1.Rittner, M.N., Weertman, J.R., and Eastman, J.A., Acta Mater. 44, 1271 (1996).CrossRefGoogle Scholar
2.Agnew, S.R., Elliot, B.R., Youngdahl, C.J., Hernker, K.J., and Weertman, J.R., in Modeling of Structure and Mechanics of Materials from Microscale to Product, edited by Carstensen, J.V., Leffers, T., Lorentzen, T., Pedersen, O.B., S⊘rensen, B.F. and Winther, G. (Ris⊘ National Laboratory, Roskilde, Denmark, 1998), p. 1.Google Scholar
3.Colgan, E.G., Mater. Sci. Rep. 5, 1 (1990).CrossRefGoogle Scholar
4.Van Loo, F.J.J. and Reick, G.D., Acta Metall. 21, 61 (1973).CrossRefGoogle Scholar
5.Wittmer, M., Le Goues, F., and Huang, H-C.W., J. Electrochem. Soc. 132, 1450 (1985).CrossRefGoogle Scholar
6.Zhao, X.A., So, F.C.T., and Nicolet, M-A., J. Appl. Phys. 63, 2800 (1998).CrossRefGoogle Scholar
7.Mingard, K.P. and Cantor, B., J. Mater. Res. 8, 274 (1993).CrossRefGoogle Scholar
8.Lever, R.F., Howard, J.K., Chu, W.K., and Smith, P.J., J. Vac. Sci. Technol. 14, 158 (1977).CrossRefGoogle Scholar
9.Colgan, E.G. and Mayer, J.W., J. Mater. Res. 4, 815 (1989).CrossRefGoogle Scholar
10.Banerjee, R., Zhang, X.D., Dregia, S.A., and Fraser, H.L., in Nanophase and Nanocomposite Materials II, edited by Komarreni, S., Parker, J.C., and Wollenberger, H.J. (Mater. Res. Soc. Symp. Proc. 457, Pittsburgh, PA, 1997) p. 309.Google Scholar
11.Maugis, P., Blaise, G., and Philibert, J., in Interface Dynamics and Growth, edited by Liang, K.S., Anderson, M.P., Bruinsma, R.F., and Scoles, G. (Mater. Res. Soc. Symp. Proc. 237, Pittsburgh, PA, 1992), p. 679.Google Scholar
12.Bower, R.W., Appl. Phys. Lett. 23, 99 (1973).CrossRefGoogle Scholar
13.Colgan, E.G., Nastasi, M., and Mayer, J.W., J. Appl. Phys. 58, 4125 (1985).CrossRefGoogle Scholar
14.Eizenberg, M., Thompson, R.D., and Tu, K.N., J. Appl. Phys. 53, 6891 (1982).CrossRefGoogle Scholar
15.Hong, Q.Z., Lilientield, D.A., and Mayer, J.W., J. Appl. Phys. 64, 4478 (1988).CrossRefGoogle Scholar
16.Matsui, T., Morii, K., and Nakayama, Y., Scripta Metall. Mater. 24, 1149 (1990).CrossRefGoogle Scholar
17.Colgan, E.G. and Mayer, J.W., J. Mater. Res. 4, 815 (1989).CrossRefGoogle Scholar
18.Tardy, J. and Tu, K.N., Phys. Rev. B 32, 2070 (1985).CrossRefGoogle Scholar
19.Colgan, E.G. and Mayer, J.W., Nucl. Inst. Methods B 17, 242 (1986).CrossRefGoogle Scholar
20.Michaelsen, C., Wobhlert, S., Bormann, R., and Barmak, K., in Thermodynamics and Kinetics of Phase Transformations, edited by Im, J.S., Park, B., Greer, A.L., and Stephenson, G.B. (Mater. Res. Symp. Proc. 398, Pittsburgh, PA, 1996), p. 245.Google Scholar
21.Mitra, R., Madan, A., Hoffman, R.A., Chiou, W-A., and Weertman, J.R., in Thin Films, Stresses and Mechanical Proper-ties VIII, edited by Vinci, R., Kraft, O., Moody, N., Besser, P., and Shaffer II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA), 43.Google Scholar
22.Stoney, G.G., Proc. Roy. Soc. London A82, 172 (1909).Google Scholar
23.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
24.Ahuja, R. and Fraser, H.L., JOM 46, 35 (1994).CrossRefGoogle Scholar
25.Banerjee, R., Dregia, S.A., and Fraser, H.L., Acta Mater. 47, 4225 (1999).CrossRefGoogle Scholar
26.Schwarzer, R.A., in Trends and New Applications of Thin Films, edited by H. Hoffman (Trans. Tech. Publications, Uetikon-Zuerich, Switzerland, 1998).Google Scholar
27.Mitra, R., Hoffman, R.A., Madan, A., and Weertman, J.R., J. Mater. Res. 16, 1010 (2001).CrossRefGoogle Scholar
28.Banerjee, R., Ahuja, R., and Fraser, H.L., Phys. Rev. Lett. 76, 3778 (1996).CrossRefGoogle Scholar
29.Bonevich, J., van Heerden, D., and Josell, D., J. Mater. Res. 14, 1977 (1999).CrossRefGoogle Scholar
30.van Hardeen, D., Josell, D., and Shectman, D., Acta Mater. 44, 297 (1996).CrossRefGoogle Scholar
31. Powder Diffraction File, Card Nos. 4-787, 5-682, Inorganic Phases, JCPDS International Centre for Diffraction Data (Swarthmore, PA, 1989).Google Scholar
32.Banerjee, R., Zhang, X-D., Dregia, S.A., and Fraser, H.L., Acta Mater. 47, 1153 (1999).CrossRefGoogle Scholar
33.Dregia, S.A., Banerjee, R., and Fraser, H.L., Scripta Mater. 39, 217 (1998).CrossRefGoogle Scholar
34.Barin, I., Thermochemical Data of Pure Substances (VCH, Wein-heim, Germany, 1989), p. 71.Google Scholar
35.Bené, R.W., Appl. Phys. Lett. 41, 529 (1982).CrossRefGoogle Scholar
36.Ouchi, K-I., lijima, Y., and Hirano, K-I., in Titanium ’80 Science and Technology, edited by Kimura, H. and O. Izumi (Proc. 4th Int. Conf.Titanium, Kyoto, Japan, TMS, Warrendale, PA, 1980), p. 559.Google Scholar
37.Haugen, E.B., Probabilistic Approaches to Design (Wiley, New York, 1968), p. 47.Google Scholar
38.Kissinger, H.E., Analyt. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
39.Choi-Yim, H., Busch, R., Koster, U., and Johnson, W.L., Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
40.Ruud, J.A., Witvrouw, A., and Spaepen, F., J. Appl. Phys. 74, 2517 (1993).CrossRefGoogle Scholar
41.Misra, A., Kung, H., Mitchell, T.E., and Nastasi, M., J. Mater. Res. 15, 756 (2000).CrossRefGoogle Scholar
42.Bain, J.A., Chyung, L.J., Brennan, S., and Clemens, B.M., Phys. Rev. B 44, 1184 (1991).CrossRefGoogle Scholar
43.Cammarata, R.C. and Sieradzki, K., Phys. Rev. Lett. 62, 2005 (1989).CrossRefGoogle Scholar
44.Gardner, D.S., Michalka, T.L., Flinn, P.A., Barbee, T.W. Jr., Saraswat, K.C., and Meindl, J.D., in Proc. 2nd Int. IEEE VLSI Multilevel Interconnection Conf, (IEEE, New York, 1985), p.102.Google Scholar