Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T02:28:24.716Z Has data issue: false hasContentIssue false

Development and exploration of refractory high entropy alloys—A review

Published online by Cambridge University Press:  08 June 2018

Oleg N. Senkov*
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
Daniel B. Miracle
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
Kevin J. Chaput
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
Jean-Philippe Couzinie
Affiliation:
Université Paris Est, ICMPE (UMR 7182) CNRS-UPEC, 2-8 rue Henri Dunant, F-94320, Thiais F-94320, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Open literature publications, in the period from 2010 to the end of January 2018, on refractory high entropy alloys (RHEAs) and refractory complex concentrated alloys (RCCAs) are reviewed. While RHEAs, by original definition, are alloys consisting of five or more principal elements with the concentration of each of these elements between 5 and 35 at.%, RCCAs can contain three or more principal elements and the element concentration can be greater than 35%. The 151 reported RHEAs/RCCAs are analyzed based on their composition, processing methods, microstructures, and phases. Mechanical properties, strengthening and deformation mechanisms, oxidation, and corrosion behavior, as well as tribology, of RHEA/RCCAs are summarized. Unique properties of some of these alloys make them promising candidates for high temperature applications beyond Ni-based superalloys and/or conventional refractory alloys. Methods of development and exploration, future directions of research and development, and potential applications of RHEAs are discussed.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mat. Sci. Eng., A 375–377, 213 (2004).CrossRefGoogle Scholar
Yeh, J-W., Chen, S-K., Gan, J-W., Lin, S-J., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533 (2004).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).CrossRefGoogle Scholar
Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K.: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).CrossRefGoogle Scholar
Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B.: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).CrossRefGoogle Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., and Woodward, C.F.: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloy. Comp. 509, 6043 (2011).CrossRefGoogle Scholar
Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F.: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062 (2012).CrossRefGoogle Scholar
Juan, C-C., Tsai, M-H., Tsai, C-W., Lin, C-M., Wang, W-R., Yang, C-C., Chen, S-K., Lin, S-J., and Yeh, J-W.: Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62, 76 (2015).CrossRefGoogle Scholar
Senkov, O.N. and Semiatin, S.L.: Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloy. Comp. 649, 1110 (2015).CrossRefGoogle Scholar
Lin, C-M., Juan, C-C., Chang, C-H., Tsai, C-W., and Yeh, J-W.: Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. J. Alloy. Comp. 624, 100 (2015).CrossRefGoogle Scholar
Song, H., Tian, F., and Wang, D.: Thermodynamic properties of refractory high entropy alloys. J. Alloys Compd. 682, 773 (2016).CrossRefGoogle Scholar
Juan, C-C., Tsai, M-H., Tsai, C-W., Hsu, W-L., Lin, C-M., Chen, S-K., Lin, S-J., and Yeh, J-W.: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Mater. Lett. 184, 200 (2016).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Zherebtsov, S.V., Tikhonovsky, M.A., and Salishchev, G.A.: Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 211, 87 (2018).CrossRefGoogle Scholar
Jayaraj, J., Thinaharan, C., Ningshen, S., Mallika, C., and Kamachi Mudali, U.: Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium. Intermetallics 89, 123 (2017).CrossRefGoogle Scholar
Zheng, S., Feng, W., and Wang, S.: Elastic properties of high entropy alloys by MaxEnt approach. Comput. Mater. Sci. 142, 332 (2018).CrossRefGoogle Scholar
Couzinie, J.P., Lilensten, L., Champion, Y., Dirras, G., Perriere, L., and Guillot, I.: On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater. Sci. Eng., A 645, 255 (2015).CrossRefGoogle Scholar
Couzinie, J.P., Dirras, G., Perriere, L., Chauveau, T., Leroy, E., Champion, Y., and Guillot, I.: Microstructure of a near-equimolar refractory high-entropy alloy. Mater. Lett. 126, 285 (2014).CrossRefGoogle Scholar
Dirras, G., Gubicza, J., Heczel, A., Lilensten, L., Couzinie, J.P., Perriere, L., Guillot, I., and Hocini, A.: Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Mater. Charact. 108, 1 (2015).CrossRefGoogle Scholar
Juan, C-C., Tseng, K-K., Hsu, W-L., Tsai, M-H., Tsai, C-W., Lin, C-M., Chen, S-K., Lin, S-J., and Yeh, J-W.: Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett. 175, 284 (2016).CrossRefGoogle Scholar
Dirras, G., Couque, H., Lilensten, L., Heczel, A., Tingaud, D., Couzinie, J.P., Perriere, L., Gubicza, J., and Guillot, I.: Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions. Mater. Charact. 111, 106 (2016).CrossRefGoogle Scholar
Dirras, G., Lilensten, L., Djemia, P., Laurent-Brocq, M., Tingaud, D., Couzinie, J.P., Perriere, L., Chauveau, T., and Guillot, I.: Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater. Sci. Eng., A 654, 30 (2016).CrossRefGoogle Scholar
Schuh, B., Volker, B., Todt, J., Schell, N., Perriere, L., Li, J., Couzinie, J.P., and Hohenwarter, A.: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 142, 201 (2018).CrossRefGoogle Scholar
Lilensten, L., Couzinie, J-P., Perriere, L., Hocini, A., Keller, C., Dirras, G., and Guillot, I.: Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 142, 131 (2018).CrossRefGoogle Scholar
Dobbelstein, H., Thiele, M., Gurevich, E.L., George, E.P., and Ostendorf, A.: Direct metal deposition of refractory high entropy alloy MoNbTaW. Physics Procedia. 83, 624 (2016).Google Scholar
Han, Z.D., Chen, N., Zhao, S.F., Fan, L.W., Yang, G.N., Shao, Y., and Yao, K.F.: Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153 (2017).CrossRefGoogle Scholar
Feng, X.B., Zhang, J.Y., Wang, Y.Q., Hou, Z.Q., Wu, K., Liu, G., and Sun, J.: Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. Int. J. Plast. 95, 264 (2017).CrossRefGoogle Scholar
Feng, X., Zhang, J., Xia, Z., Fu, W., Wu, K., Liu, G., and Sun, J.: Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties. Mater. Lett. 210, 84 (2018).CrossRefGoogle Scholar
Han, Z.D., Luan, H.W., Liu, X., Chen, N., Li, X.Y., Shao, Y., and Yao, K.F.: Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng., A 712, 380 (2018).CrossRefGoogle Scholar
Zou, Y., Maiti, S., Steurer, W., and Spolenak, R.: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).CrossRefGoogle Scholar
Zou, Y., Okle, P., Yu, H., Sumigawa, T., Kitamura, T., Maiti, S., Steurer, W., and Spolenak, R.: Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies. Scr. Mater. 128, 95 (2017).CrossRefGoogle Scholar
Widom, M., Huhn, W.P., Maiti, S., and Steurer, W.: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).CrossRefGoogle Scholar
Wang, W.Y., Wang, J., Lin, D., Zou, C., Wu, Y., Hu, Y., Shang, S-L., Darling, K.A., Wang, Y., Hui, X., Li, J., Kecskes, L.J., Liaw, P.K., and Liu, Z-K.: Revealing the microstates of body-centered-cubic (BCC) equiatomic high entropy alloys. J. Phase Equilib. Diffus. 38, 404 (2017).CrossRefGoogle Scholar
Del Grosso, M.F., Bozzolo, G., and Mosca, H.O.: Modeling of high entropy alloys of refractory elements. Phys. B 407, 3285 (2012).CrossRefGoogle Scholar
Zhang, B., Gao, M.C., Zhang, Y., and Guo, S.M.: Senary refractory high-entropy alloy CrxMoNbTaVW. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 51, 193 (2015).CrossRefGoogle Scholar
Fernandez-Caballero, A., Wrobel, J.S., Mummery, P.M., and Nguyen-Manh, D.: Short-range order in high entropy alloys: Theoretical formulation and application to Mo–Nb–Ta–V–W system. J. Phase Equilib. Diffus. 38, 391 (2017).CrossRefGoogle Scholar
Poulia, A., Georgatis, E., Lekatou, A., and Karantzalis, A.: Dry-sliding wear response of MoTaWNbV high entropy alloy. Adv. Eng. Mater. 19, 1600535 (2017).CrossRefGoogle Scholar
Kang, B., Lee, J., Ryu, H.J., and Hong, S.H.: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng., A 712, 616 (2018).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., Woodward, C., and Miracle, D.B.: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545 (2013).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C.: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mat. Sci. Eng., A 565, 51 (2013).CrossRefGoogle Scholar
Tian, F., Varga, L.K., Chen, N., Shen, J., and Vitos, L.: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 599, 19 (2014).CrossRefGoogle Scholar
Butler, T.M., Chaput, K.J., Dietrich, J.R., and Senkov, O.N.: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs). J. Alloys Compd. 729, 1004 (2017).CrossRefGoogle Scholar
Tian, L-Y., Wang, G., Harris, J.S., Irving, D.L., Zhao, J., and Vitos, L.: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).CrossRefGoogle Scholar
Wu, Y.D., Cai, Y.H., Chen, X.H., Wang, T., Si, J.J., Wang, L., Wang, Y.D., and Hui, X.D.: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 83, 651 (2015).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., and Woodward, C.: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).CrossRefGoogle Scholar
Senkov, O.N., Woodward, C., and Miracle, D.B.: Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM 66, 2030 (2014).CrossRefGoogle Scholar
Senkov, O.N., Isheim, D., Seidman, D.N., and Pilchak, A.L.: Development of a refractory high entropy superalloy. Entropy 18, 102 (2016).CrossRefGoogle Scholar
Jensen, J.K., Welk, B.A., Williams, R.E.A., Sosa, J.M., Huber, D.E., Senkov, O.N., Viswanathan, G.B., and Fraser, H.L.: Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr. Mater. 121, 1 (2016).CrossRefGoogle Scholar
Jensen, J.K.: Characterization of a high strength, refractory high entropy alloy, AlMo0.5NbTa0.5TiZr. Ph.D. dissertation, The Ohio State University, Columbus, OH, 2017; pp. 1202.Google Scholar
Senkov, O.N., Jensen, J.K., Pilchak, A.L., Miracle, D.B., and Fraser, H.L.: Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater. Des. 139, 498 (2018).CrossRefGoogle Scholar
Gao, M.C., Zhang, B., Yang, S., and Guo, S.M.: Senary refractory high-entropy alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47, 3333 (2016).CrossRefGoogle Scholar
Maiti, S. and Steurer, W.: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2016).CrossRefGoogle Scholar
Lilensten, L., Couzinie, J.P., Perriere, L., Bourgon, J., Emery, N., and Guillot, I.: New structure in refractory high-entropy alloys. Mater. Lett. 132, 123 (2014).CrossRefGoogle Scholar
Fazakas, E., Zadorozhnyy, V., Varga, L.K., Inoue, A., Louzguine-Luzgin, D.V., Tian, F., and Vitos, L.: Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys. Int. J. Refract. Metals Hard Mater. 47, 131 (2014).CrossRefGoogle Scholar
Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Chen, R.R., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy. Mater. Sci. Eng., A 651, 698 (2016).CrossRefGoogle Scholar
Waseem, O.A., Lee, J., Lee, H.M., and Ryu, H.J.: The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater. Chem. Phys. 210, 87 (2018).CrossRefGoogle Scholar
Liu, B., Wang, J., Chen, J., Fang, Q., and Liu, Y.: Ultra-high strength TiC/refractory high-entropy-alloy composite prepared by powder metallurgy. JOM 69, 651 (2017).CrossRefGoogle Scholar
Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Wu, W., and Lu, Z.: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).CrossRefGoogle ScholarPubMed
Jiang, H., Jiang, L., Lu, Y.P., Wang, T.M., Cao, Z.Q., and Li, T.J.: Microstructure and mechanical properties of the W–Ni–Co system refractory high-entropy alloys. Materials Science Forum. 816, 324 (2015).Google Scholar
Okamoto, H., Subramanian, P.R., and Kacprzak, L., eds.: Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990).Google Scholar
Villars, P., Prince, A., and Okamoto, H.: Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, USA, 1995).Google Scholar
Chen, H., Kauffmann, A., Gorr, B., Schliephake, D., Seemuller, C., Wagner, J.N., Christ, H.J., and Heilmaier, M.: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al. J. Alloys Compd. 661, 206 (2016).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Panina, E.S., Tikhonovsky, M.A., and Zherebtsov, S.V.: Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 188, 162 (2017).CrossRefGoogle Scholar
Senkov, O.N. and Woodward, C.F.: Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng., A 529, 311 (2011).CrossRefGoogle Scholar
Gao, M.C., Carney, C.S., Doan, N., Jablonksi, P.D., Hawk, J.A., and Alman, D.E.: Design of refractory high-entropy alloys. JOM 67, 2653 (2015).CrossRefGoogle Scholar
Yurchenko, N.Y., Stepanov, N.D., Zherebtsov, S.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mat. Sci. Eng., A 704, 82 (2017).CrossRefGoogle Scholar
Senkov, O.N., Senkova, S.V., Dimiduk, D.M., Woodward, C., and Miracle, D.B.: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J. Mater. Sci. 47, 6522 (2012).CrossRefGoogle Scholar
Okamoto, H.: Phase Diagrams for Binary Alloys, 2nd ed. (ASM International, Materials Park, OH, USA, 2010).Google Scholar
Sheikh, S., Shafeie, S., Hu, Q., Ahlstrom, J., Persson, C., Vesely, J., Zyka, J., Klement, U., and Guo, S.: Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 120, 164902 (2016).CrossRefGoogle Scholar
Wu, Y.D., Cai, Y.H., Wang, T., Si, J.J., Zhu, J., Wang, Y.D., and Hui, X.D.: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 130, 277 (2014).CrossRefGoogle Scholar
Wang, S-P. and Xu, J.: TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng., C 73, 80 (2017).CrossRefGoogle ScholarPubMed
Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater. Des. 81, 87 (2015).CrossRefGoogle Scholar
Yao, H.W., Qiao, J.W., Hawk, J.A., Zhou, H.F., Chen, M.W., and Gao, M.C.: Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloy. Comp. 696, 1139 (2017).CrossRefGoogle Scholar
Qi, L. and Chrzan, D.C.: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys. Phys. Rev. Lett. 112, 115503 (2014).CrossRefGoogle ScholarPubMed
Yang, X., Zhang, Y., and Liaw, P.K.: Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng. 36, 292 (2012).CrossRefGoogle Scholar
Qiao, D.X., Jiang, H., Chang, X.X., Lu, Y.P., and Li, T.J.: Microstructure and mechanical properties of VTaTiMoAlx refractory high entropy alloys. Mater. Sci. Forum 898, 638 (2017).CrossRefGoogle Scholar
Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Chen, R.R., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in situ compound. J. Alloys Compd. 660, 197 (2016).CrossRefGoogle Scholar
Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Chen, R.R., Su, Y.Q., Guo, J.J., and Fu, H.Z.: Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite. Intermetallics 69, 74 (2016).CrossRefGoogle Scholar
Zhang, Y., Liu, Y., Li, Y., Chen, X., and Zhang, H.: Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater. Lett. 174, 82 (2016).CrossRefGoogle Scholar
Liu, Y., Zhang, Y., Zhang, H., Wang, N., Chen, X., Zhang, H., and Li, Y.: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J. Alloy. Comp. 694, 869 (2017).CrossRefGoogle Scholar
Stepanov, N.D., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Skibin, D.V., Tikhonovsky, M.A., and Salishchev, G.A.: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloy. Comp. 652, 266 (2015).CrossRefGoogle Scholar
Stepanov, N.D., Yurchenko, N.Y., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A.: Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Technol. 31, 1184 (2015).CrossRefGoogle Scholar
Lilensten, L., Couzinie, J-P., Bourgon, J., Perriere, L., Dirras, G., Prima, F., and Guillot, I.: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett. 5, 110 (2017).CrossRefGoogle Scholar
Herrera, C., Ponge, D., and Raabe, D.: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 59, 4653 (2011).CrossRefGoogle Scholar
Grassel, O., Kruger, L., Frommeyer, G., and Meyer, L.W.: High strength Fe–Mn–(Al,Si) TRIP/TWIP steel development—properties—applications. Int. J. Plast. 16, 1391 (2000).CrossRefGoogle Scholar
Sun, F., Zhang, J.Y., Marteleur, M., Gloriant, T., Vermaut, P., Laille, D., Castany, P., Curfs, C., Jacques, P.J., and Prima, F.: Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater. 61, 6406 (2013).CrossRefGoogle Scholar
Marteleur, M., Sun, F., Gloriant, T., Vermaut, P., Jacques, P.J., and Prima, F.: On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scripta Mater. 66, 749 (2012).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Chen, H., Kauffmann, A., Laube, S., Choi, I.C., Schwaiger, R., Huang, Y., Lichtenberg, K., Muller, F., Gorr, B., Christ, H.J., and Heilmaier, M.: Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys. Metall. Mater. Trans. A 49, 772 (2018).CrossRefGoogle Scholar
Labusch, R.: Statistical theories of solid solution hardening. Acta Metall. 20, 917 (1972).CrossRefGoogle Scholar
Gypen, L.A. and Deruyttere, A.: The combination of atomic size and elastic modulus misfit interactions in solid solution hardening. Scripta Metall. 15, 815 (1981).CrossRefGoogle Scholar
Suzuki, T.: On the studies of solid solution hardening. Jpn. J. Appl. Phys. 20, 449 (1981).CrossRefGoogle Scholar
Toda-Caraballo, I. and Rivera-Diaz-Del-Castillo, P.E.J.: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14 (2015).CrossRefGoogle Scholar
Mooren, H.A., Taggart, R., and Polonis, D.H.: A model for the prediction of lattice parameters of solid solutions. Metall. Trans. 2, 265 (1971).CrossRefGoogle Scholar
Yao, H.W., Qiao, J.W., Gao, M.C., Hawk, J.A., Ma, S.G., and Zhou, H.F.: MoNbTaV medium-entropy alloy. Entropy 18, 189 (2016).CrossRefGoogle Scholar
Qiu, S., Miao, N., Zhou, J., Guo, Z., and Sun, Z.: Strengthening mechanism of aluminum on elastic properties of NbVTiZr high-entropy alloys. Intermetallics 92, 7 (2018).CrossRefGoogle Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations, 2nd ed. (Krieger Publishing Co., Malabar, FL, USA, 1992).Google Scholar
Rao, S.I., Varvenne, C., Woodward, C., Parthasarathy, T.A., Miracle, D., Senkov, O.N., and Curtin, W.A.: Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy. Acta Mater. 125, 311 (2017).CrossRefGoogle Scholar
Gorr, B., Azim, M., Christ, H.J., Mueller, T., Schliephake, D., and Heilmaier, M.: Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J. Alloys Compd. 624, 270 (2015).CrossRefGoogle Scholar
Gorr, B., Mueller, F., Christ, H-J., Mueller, T., Chen, H., Kauffmann, A., and Heilmaier, M.: High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb–20Mo–20Cr–20Ti–20Al with and without Si addition. J. Alloy. Comp. 688, 468 (2016).CrossRefGoogle Scholar
Gorr, B., Muller, F., Azim, M., Christ, H-J., Muller, T., Chen, H., Kauffmann, A., and Heilmaier, M.: High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition. Oxid. Met. 88, 339 (2017). doi: 10.1007/s11085–016–9696-y.CrossRefGoogle Scholar
Chang, C-H., Titus, M., and Yeh, J-W.: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum. Adv. Eng. Mater., 1700948 (2018). doi: 10.1002/adem.201700948.CrossRefGoogle Scholar
Senkov, O.N.: Oxidation Behavior of Al-containing Refractory High Entropy Alloys (Air Force Research Laboratory, Wright-Patterson AFB, OH, 2012).Google Scholar
Liu, C.M., Wang, H.M., Zhang, S.Q., Tang, H.B., and Zhang, A.L.: Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd. 583, 162 (2014).CrossRefGoogle Scholar
Zheng, J., Hou, X., Wang, X., Meng, Y., Zheng, X., and Zheng, L.: Isothermal oxidation mechanism of a newly developed Nb–Ti–V–Cr–Al–W–Mo–Hf alloy at 800–1200 °C. Int. J. Refract. Met. Hard Mater. 54, 322 (2016).CrossRefGoogle Scholar
Mayo, G.T.J., Shepherd, W.H., and Thomas, A.G.: Oxidation behaviour of niobium-chromium alloys. J. Less Common Met. 2, 223 (1960).CrossRefGoogle Scholar
Kofstad, P.: High Temperature Corrosion (Elsevier Applied Science, New York, NY, USA, 1988).Google Scholar
Young, D.J.: High Temperature Oxidation and Corrosion of Metals (Elsevier, Cambridge, MA, USA, 2016).Google Scholar
Westbrook, J.H. and Wood, D.L.: “Pest” degradation in beryllides, silicides, aluminides, and related compounds. J. Nucl. Mater. 12, 208 (1964).CrossRefGoogle Scholar
Giggins, C.S. and Pettit, F.S.: Oxidation of Ni–Cr–Al alloys between 1000° and 1200 °C. J. Electrochem. Soc. 118, 1782 (1971).CrossRefGoogle Scholar
Poulia, A., Georgatis, E., Lekatou, A., and Karantzalis, A.E.: Microstructure and wear behavior of a refractory high entropy alloy. Int. J. Refract. Metals Hard Mater. 57, 50 (2016).CrossRefGoogle Scholar
Mathiou, C., Poulia, A., Georgatis, E., and Karantzalis, A.E.: Microstructural features and dry—sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phys. 210, 126 (2018).CrossRefGoogle Scholar
Ye, Y.X., Liu, C.Z., Wang, H., and Nieh, T.G.: Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater. 147, 78 (2018).CrossRefGoogle Scholar
Grigoriev, S.N., Sobol, O.V., Beresnev, V.M., Serdyuk, I.V., Pogrebnyak, A.D., Kolesnikov, D.A., and Nemchenko, U.S.: Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. J. Frict. Wear 35, 359 (2014).CrossRefGoogle Scholar
Braic, V., Balaceanu, M., Braic, M., Viadescu, A., Panseri, S., and Russo, A.: Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 10, 197 (2012).CrossRefGoogle ScholarPubMed
Miracle, D.B., Miller, J.D., Senkov, O.N., Woodward, C., Uchic, M.D., and Tiley, J.: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).CrossRefGoogle Scholar
Senkov, O.N., Miller, J.D., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys for structural applications. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 50, 32 (2015).CrossRefGoogle Scholar
Miracle, D., Majumdar, B., Wertz, K., and Gorsse, S.: New strategies and tests to accelerate discovery and development of multi-principal element structural alloys. Scripta Mater. 127, 195 (2017).CrossRefGoogle Scholar
Senkov, O.N., Miller, J.W., Miracle, D.B., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).CrossRefGoogle ScholarPubMed
Zhang, F., Zhang, C., Chen, S.L., Zhu, J., Cao, W.S., and Kattner, U.R.: An understanding of high entropy alloys from phase diagram calculations. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 45, 1 (2014).CrossRefGoogle Scholar
Gao, M.C.: Computational thermodynamic and kinetic modeling of high-entropy alloys and amorphous alloys. JOM 64, 828 (2012).CrossRefGoogle Scholar
Senkov, O.N., Zhang, F., and Miller, J.D.: Phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy: Comparison of experimental and simulated data. Entropy 15, 3796 (2013).CrossRefGoogle Scholar
Zhang, B., Gao, M.C., Zhang, Y., Yang, S., and Guo, S.M.: Senary refractory high entropy alloy MoNbTaTiVW. Mater. Sci. Technol. 31, 1207 (2015).CrossRefGoogle Scholar
Yao, H.W., Qiao, J.W., Gao, M.C., Hawk, J.A., Ma, S.G., Zhou, H.F., and Zhang, Y.: NbTaV–(Ti,W) refractory high-entropy alloys: Experiments and modeling. Mater. Sci. Eng., A 674, 203 (2016).CrossRefGoogle Scholar
Mu, Y.K., Liu, H.X., Liu, Y.H., Zhang, X.W., Jiang, Y.H., and Dong, T.: An ab initio and experimental studies of the structure, mechanical parameters and state density on the refractory high-entropy alloy systems. J. Alloys Compd. 714, 668 (2017).CrossRefGoogle Scholar
Wertz, K., Miller, J., and Senkov, O.: Toward multi-principal component alloy discovery: Assessment of the CALPHAD thermodynamic databases for prediction of novel ternary alloy systems. J. Mater. Res. Published on-line 08 May 2018. https://doi.org/10.1557/jmr.2018.61 (2018).CrossRefGoogle Scholar
Thermo-Calc Software. TCHEA2: TCS High Entropy Alloy Database. Available at: http://www.thermocalc.com/media/35873/tchea2_extended_info.pdf.Google Scholar
CompuTherm: PanHEA—Thermodynamic database for multi-component high entropy alloys. Available at: http://www.computherm.com/index.php?route=product/product&path=59_83&product_id=59.Google Scholar
Cao, P., Ni, X., Tian, F., Varga, L.K., and Vitos, L.: Ab initio study of AlxMoNbTiV high-entropy alloys. J. Phys. Condens. Matter 27, 075401 (2015).CrossRefGoogle ScholarPubMed
Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992).CrossRefGoogle Scholar
Song, H.Q., Tian, F.Y., Hu, Q.M., Vitos, L., Wang, Y.D., Shen, J.A., and Chen, N.X.: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 023404 (2017).CrossRefGoogle Scholar
Huhn, W.P. and Widom, M.: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W. JOM 65, 1772 (2013).CrossRefGoogle Scholar
Wang, Y., Yan, M., Zhu, Q., Wang, W.Y., Wu, Y., Hui, X., Otis, R., Shang, S-L., Liu, Z-K., and Chen, L-Q.: Computation of entropies and phase equilibria in refractory V–Nb–Mo–Ta–W high-entropy alloys. Acta Mater. 143, 88 (2018).CrossRefGoogle Scholar
Wang, W.Y., Shang, S.L., Wang, Y., Han, F., Darling, K.A., Wu, Y., Xie, X., Senkov, O.N., Li, J., Hui, X.D., Dahmen, K.A., Liaw, P.K., Kecskes, L.J., and Liu, Z.K.: Atomic and electronic basis for the serrations of refractory high-entropy alloys. npj Comput. Mater. 3, 23 (2017).CrossRefGoogle Scholar
Davis, J.R.: Metals Handbook, Desk Edition, 2nd ed. (ASM International, Metals Park, OH, USA, 1998).Google Scholar
Miracle, D.B.: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 1142 (2015).CrossRefGoogle Scholar
Donoso, J.R. and Reed-Hill, R.E.: Slow strain rate embrittlement of niobium by oxygen. Metall. Trans. 7, 961 (1976).CrossRefGoogle Scholar
Liu, C.T. and Inoue, H.: Internal oxidation and mechanical properties of TZM–Mo alloy. Metall. Trans. 5, 2515 (1974).CrossRefGoogle Scholar
Kelly, A., Tyson, W.R., and Cotrell, A.H.: Theoretical strength of crystals and the tip of a crack. Can. J. Phys. 45, 883 (1967).CrossRefGoogle Scholar
Tetelman, A.S. and McEvily, J.A.J.: Fracture of Structural Materials (John Wiley & Sons, Inc., New York, NY, USA, 1967).Google Scholar
Zhang, Y., Yang, X., and Liaw, P.K.: Alloy design and properties optimization of high-entropy alloys. JOM 64, 830 (2012).CrossRefGoogle Scholar
Chen, S.Y., Yang, X., Dahmen, K.A., Liaw, P.K., and Zhang, Y.: Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy 16, 870 (2014).CrossRefGoogle Scholar
Zhang, Y., Liu, Y., Li, Y., Chen, X., and Zhang, H.: Microstructure and mechanical properties of a new refractory HfNbSi0.5TiVZr high entropy alloy. Mater. Sci. Forum 849, 76 (2016).CrossRefGoogle Scholar
Todai, M., Nagase, T., Hori, T., Matsugaki, A., Sekita, A., and Nakano, T.: Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scripta Mater. 129, 65 (2017).CrossRefGoogle Scholar
Muller, F., Gorr, B., Christ, H-J., Chen, H., Kauffmann, A., and Heilmaier, M.: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta–Mo–Cr–Ti–Al. Mater. High. Temp., 35, 168 (2018). doi: 10.1080/09603409.2017.1389115.CrossRefGoogle Scholar
Zhang, M., Zhou, X., and Li, J.: Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy. J. Mater. Eng. Perform. 26, 3657 (2017).CrossRefGoogle Scholar
Zhang, B., Mu, Y., Gao, M.C., Meng, W.J., and Guo, S.M.: On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy. MRS Commun., 7, 78 (2017). doi: 10.1557/mrc.2017.7.CrossRefGoogle Scholar
Poulia, A., Georgatis, E., Mathiou, C., and Karantzalis, A.E.: Phase segregation discussion in a Hf25Zr30Ti20Nb15V10 high entropy alloy: The effect of the high melting point element. Mater. Chem. Phys. 210, 251 (2018). doi: 10.1016/j.matchemphys.2017.09.059.CrossRefGoogle Scholar
Karantzalis, A.E., Poulia, A., Georgatis, E., and Petroglou, D.: Phase formation criteria assessment on the microstructure of a new refractory high entropy alloy. Scr. Mater. 131, 51 (2017).CrossRefGoogle Scholar
Melnick, A.B. and Soolshenko, V.K.: Thermodynamic design of high-entropy refractory alloys. J. Alloys Compd. 694, 223 (2017).CrossRefGoogle Scholar
Zhang, M., Zhou, X., Yu, X., and Li, J.: Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf. Coat. Technol. 311, 321 (2017).CrossRefGoogle Scholar