Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T12:47:45.826Z Has data issue: false hasContentIssue false

Dependence of structural, electrical, and optical properties of ZnO:Al films on substrate temperature

Published online by Cambridge University Press:  31 January 2011

M. Chen*
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai, China, 200050 and Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China, 110015
Z. L. Pei
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China, 110015
X. Wang
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai, China, 200050
C. Sun
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shanghai, China, 110015
L. S. Wen
Affiliation:
Institute of Metal Research, Chinese Academy of Sciences, Shanghai, China, 110015
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

ZnO:Al (ZAO) films were deposited on fused silica substrates heated to 350 °C by dc magnetron reactive sputtering from a Zn target mixed with 1.5 wt% Al. Films deposited on a substrate heated to a temperature between room temperature and 300 °C were (001)-oriented crystals, but those grown at 350 °C consisted of crystallites with (001) and (101) orientations. The dependence of electrical properties such as resistivity, carrier concentration, and Hall mobility on temperature was measured. The results indicate that the carrier concentration and Hall mobility increase with increasing temperature up to 250 °C, though the Al content remains unchanged in this temperature range. The probable mechanisms are discussed. The minimum resistivity of ZAO films is 4.23 × 10−4 Ω cm, with a carrier concentration of 9.21 × 1020 cm−3 and a Hall mobility of 16.0 cm2 v−1 s−1. The films show a visible transmittance of above 80%.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hirata, G.A., Mckittrik, J., Cheeks, T., Siqueiros, J.M., Diaz, J.A., Contreras, O., and Lopez, O.A, Thin Solid Films 288, 29 (1996).Google Scholar
2.Nunes, P., Fernandes, B., Fortunan, E., Vilarinlo, P., and Martins, R., Thin Solid Films 337, 176 (1999).Google Scholar
3.Reddy, K.T.R. and Miles, R.W., J. Mater. Sci. Lett. 17, 279 (1998).Google Scholar
4.Jin, Z.C., Hamberg, I., and Granqvist, C.G., J. Appl. Phys. 64, 5117 (1988).CrossRefGoogle Scholar
5.Major, S., Kumar, S., Bhatnagar, M., and Chopra, K.L., Appl. Phys. Lett. 40, 394 (1986).CrossRefGoogle Scholar
6.Igasaki, Y. and Saito, H., J. Appl. Phys. 69, 2190 (1991).CrossRefGoogle Scholar
7.Cebulla, R., Wendt, R., and Ellmer, K., J. Appl. Phys. 83, 1087 (1998).Google Scholar
8.Park, K.C., Ma, D.Y., and Kim, K.H., Thin Solid Films 305, 201 (1997).CrossRefGoogle Scholar
9.Ellmer, K., Kudella, F., Mientus, R., Schieck, R., and Fiechter, S., Thin Solid Films 247, 15 (1994).CrossRefGoogle Scholar
10.Harding, G.L., Window, B., and Horrigan, E.C., Sol. Energy Mater. 22, 69 (1991).Google Scholar
11.Chen, M., Sun, C., Gong, J., Huang, R.F., and Wen, L.S., The ’99 Asian Conference on Electrochemistry, (The Electrochemical Society of Japan, May 19–21, 1999) Japan, p. 29.Google Scholar
12.Segmuller, A. and Murakami, M., in Analytical Techniques for Thin Films, edited by Tu, K.N. and Rosenberg, R. (Academic, Boston, MA, 1988), p. 143.Google Scholar
13.Kuroyanagi, A., J. Appl. Phys. 66, 5492 (1989).CrossRefGoogle Scholar
14.Gupta, V. and Mansingh, A., J. Appl. Phys. 80, 1063 (1996).Google Scholar
15.Kuvaschewski, O. and Alocok, C.B., Metallurgical Thermochemistry, 5th ed. (Pergamon, London, U.K., 1979), p. 376.Google Scholar
16.Chen, M., Wang, X., Pei, Z.L., Sun, C., and Wen, L.S., Appl. Surf. Sci. 158, 134 (2000).CrossRefGoogle Scholar
17.Chen, M., Pei, Z.L., Wang, X., Yu, Y.H., Huang, R.F., and Wen, L.S., J. Phys. D: Appl. Phys. 33, 2538 (2000).CrossRefGoogle Scholar
18.Bárdoš, L. and Libra, M., Vacuum 39, 33 (1989).CrossRefGoogle Scholar
19.Qu, Y., Gessert, T.A., Ramanathan, K., Dhere, R.G., Noufi, R., and Coutts, T.J., J. Vac. Sci. Technol. A11, 996 (1993).CrossRefGoogle Scholar
20.Ghosh, S., Sarkar, A., Chaudhuri, S., and Pal, A.K., Thin Solid Films 205, 64 (1991).CrossRefGoogle Scholar
21.Chen, M., Ph.D. Thesis, Institute of Metal Research, Chinese Academy of Science (June 1999).Google Scholar
22.Chen, M., Bai, X.D., Gong, J., Sun, C., Huang, R.F., and Wen, L.S., J. Mater. Sci. Technol. 16, 281 (2000).CrossRefGoogle Scholar